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Abstract—This paper deals with a 2-D numerical modeling of ice 
accretion on aerial cables and conductors. This model, which is 
then extended approximately to cover actual 3-D cases, is 
developed on a non-dimensional basis so that results can be easily 
transposed to a wide variety of ice density, span length, cable 
diameter and torsional stiffness. The model is used to predict the 
shape and volume of the accretion as a function of the ice 
precipitation height and the cable torsional stiffness. It is 
demonstrated that the ice load is always comprised between two 
limits resulting from accretion on a fixed rigid cylinder on the 
low side and a freely rotating cylinder on the high side, with 
actual cases standing in between according to decreasing 
torsional stiffness. It is also shown accordingly that spacered 
conductor bundles are much less prone to severe icing than 
similar single conductors. 

I.  INTRODUCTION 
t is generally recognized that accretion of ice on aerial 
cables is affected by their aptitude to twist under eccentric 

loading which, in turn, depends on their torsional stiffness. As 
a matter of fact, the profile of the ice accretion at any given 
point along the span and at any given time is determined by 
the history of rotation at this point since the beginning of the 
precipitation event. It is known from experience that this 
profile can follow a variety of convex shapes from a fully 
eccentric crescent in the case of very stiff cables to a quasi-
concentric circle in the case of torsionally flexible cables. 
 

Predicting accurately the ice load on a cable system can 
only be done on the basis of a model that can reproduce the 
actual profile of the ice sleeves in contrast to most common 
icing models which assume a simple, invariable profile such 
as a semi-elliptic profile [1], a concentric circular profile [2] 
or a 3-quadrant spiral profile [3]. 
 

In other respects, it is quite difficult to generate the 
information solely from field tests as in [4] since significant 
icing precipitations are rare. Besides, as it is also the case for 
icing tests [5] in a wind tunnel, the data cannot be easily 
extrapolated to different cable systems. 
 

In consideration of this situation, this paper deals with the 
development of an appropriate 2-D model which takes into 
account the cable torsional stiffness. This 2-D model which is 
then extended approximately to 3-D yields the rotation of the 

cable as well as the shape and volume (or weight) of the 
accretion as a function of precipitation.  

II.  2-D MODELING 

A.  Basic Assumptions 
Before proceeding to the formulation of the present cable 

icing model, it is important to state the basic assumptions 
upon which it stands. Hence, it is assumed that: 

• Ice accretes only on the face of the cable exposed to 
precipitation and on this face, the accretion grows in 
the direction of the precipitation only, not sideways. 

• Liquid precipitation transforms immediately and 
completely into solid ice accretion as it hits the cable 
(dry accretion only). 

• Ice density is everywhere uniform. 
• The precipitation angle with respect to vertical is 

invariable during a given ice storm. 
• The torsional stiffness of the ice sleeve is much lower 

than the torsional stiffness of the cable and, as a result, 
it can be neglected. 

 
Besides, it should be noted that the expression “icing 

precipitation height” will be used throughout this paper 
meaning the thickness of the ice accretion on a flat surface 
perpendicular to the precipitation. 

 
B.  First Limit Case: Fixed Rigid Cylinder   

The simplest limit case is represented by a rigid circular 
cylinder with outer radius r0 and length L fixed at the ends. In 
such a case, the volume V of the accretion may be expressed 
as: 
 V=2r0hL (1) 
 
where h is the icing precipitation height. This volume would 
be identical should the ice accrete on a flat surface of area 
2r0L perpendicular to the precipitation. The shape of the ice 
sleeve is depicted in Fig. 1. The equivalent radial thickness (r-
r0) of this sleeve may be determined from the following 
expression: 
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  r -  r0 = r0 [(1+2h/πr0)1/2-1] (2) 
where r is the radius of the ice sleeve. 

 
Fig.  1.  Geometric contour of the accretion on a fixed rigid cylinder. 

 

C.  Second Limit Case: Free Rotating Rigid Cylinder 
The other limit case is represented by a free rotating 

circular cylinder, which is equivalent to a cylinder that could 
not oppose any significant resistance to the torque exerted by 
the eccentric ice load. The torque exerted by the wind load on 
the ice-covered cable is not considered here. In such a case, 
the ice accretion builds up uniformly and concentrically 
around the cylinder. With dh designating the increment of 
icing precipitation height while the cylinder makes a complete 
turn and r, the current radius of the ice sleeve, the following 
equation: 
 
 2rdh = 2πrdr (3) 
 
expressing conservation of volume must be satisfied. 
Integrating this equation from the initial condition r= r0 
yields: 
 
 r =  r0+h/π (4) 
 

Hence, it comes out that the radial thickness (r-r0) of the ice 
sleeve is solely a function of the precipitation height and it is 
independent of the cylinder diameter. The corresponding 
volume of this concentric ice sleeve may be expressed as: 
 
 V = (2r0h+ h2/π)L (5) 
 
This expression is important as it provides the upper limit of 
the volume of the accretion or, equivalently the ice load, that 
can build on a circular cylinder or cable. It may be noted that 
the first term on the right hand side corresponds to the lower 
limit, i.e. to the basic ice load on a fixed rigid cylinder as per 
(1) above, while the second term translates the overload due to 
the free rotation of the cylinder. The ratio of this overload to 
the basic ice load is directly proportional to precipitation 
height h. When the precipitation height reaches 2πr0, the basic 
ice load doubles as a result of the cylinder rotation. 
 

D.  Generic Case: Spring-Mounted Rigid Cylinder 
Let us imagine, as illustrated in Fig. 2, a rigid circular 

cylinder mounted on a torsional spring at each end that is 
exposed to icing precipitation coming down at an angle ψ with 
the vertical. Let us define three orthogonal systems of axes: 
system uOv which is fixed and lined up with the horizontal 
and the vertical respectively; system xOy which is also fixed 
but lined up along the direction of the precipitation and, 
finally, system XXOYY which rotates with the cylinder while 
angle φ denotes its angular position with respect to fixed axis 
Ov. 

 
Fig.  2.  Coordinates systems definition for cylinder accretion. 

 
Let us also consider that the ice accretion process occurs 

incrementally, a new layer of ice of thickness dh accreting on 
the exposed face of the cylinder for each increment of time. 
Defining angle βij as: 

 
 βij = φi + αij - ψ (6) 
 
where sub-index i refers to increment order while sub-index j 
refers to any generic point on the periphery of the accretion, 
coordinates xij and yij in the xOy system may be expressed as 
follows: 
 xij  = rij sin βij        (7) 
 
 yij = rij cos βij (8) 
 
Following an incremental accretion of thickness dh, but prior 
to the resulting incremental rotation, these coordinates 
transform into: 
 
 xi+1/2, j = xij (9) 
 
 y i+1/2, j = yij +dh (10) 
 
where sub-index i+1/2 stands for the current status of the 
accretion process. On the non-exposed side, the current 
coordinates of the periphery stay unchanged. The incremental 
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volume dV of the accretion may be determined from: 
 
 dVi+1=Ldh(xmax - xmin) (11) 
 
where, as depicted in Fig. 2, xmax and xmin denote the 
farthermost points on the periphery of the ice sleeve along a 
direction perpendicular to the precipitation. This incremental 
volume dVi+1 then adds up to the previous total volume Vi to 
yield the current total volume Vi+1.  
 
 It is now appropriate to work out the current position of 
the center of gravity of the ice sleeve in order then to balance 
the torque exerted by the eccentric ice load against the spring 
restoring torque. Referring to Fig. 3, let us consider element 
PP’Q’Q spanning stations j and j+1 on the incremental layer 
of accreted ice. In the fixed xOy system of axes, the center of 
gravity of this element is easily determined. Integration over 
the whole stretch of this incremental layer then provides the 
coordinates 2/1+ix , 2/1+iy  of its center of gravity : 
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Fig.  3.  Incremental accretion element in the xOy coordinate system. 

 
Continuing, the updated coordinates 2/1+iX , 2/1+iY  of the 

center of gravity of the whole ice sleeve, before incremental 
rotation, may be calculated as follows: 
 
 ( ) 12/112/1 / ++++ += iiiiii VxdVXVX  (14) 
 
 ( ) 12/112/1 / ++++ += iiiiii VydVYVY  (15) 
 

which may then be substituted into the following 
relationships: 
 
 )sin()cos( 2/12/12/1 iiiii YXXX φψφψ −+−= +++      (16) 
 
 )cos()sin( 2/12/12/1 iiiii YXYY φψφψ −+−−= +++  (17) 
 
and, in turn, into: 
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to get the polar coordinates 2/+ir , 2/+iα of the center of 
gravity of the current ice sleeve in the fixed XXOYY 
coordinate system. The torque Τi+1 exerted by this eccentric 
ice sleeve under the action of gravity may then be expressed 
as: 

 
  += +++++ )sin( 12/12/111 iiiii rVT φαρ  (20) 
 
where ρ is the density of the accreted ice. This torque must be 
balanced by the restoring torque kφi+1 put up by the torsional 
springs set up at the ends, a condition that translates into the 
following equilibrium equation: 

 
  += +++++ )sin()/( 12/12/111 iiiii krV φαρφ  (21) 
 
which has to be solved for the current rotation φi+1 of the 
cylinder. 
 

Once φi+1 has been determined, the coordinates of the center 
of gravity of the ice sleeve may be updated using the 
following expressions: 
 
  −+= ++++ )sin( 12/12/11 ψφα iiii rX  (22) 
 
  −+= ++++ )cos( 12/12/11 ψφα iiii rY  (23) 
 
As for the current coordinates of the points on the periphery of 
the ice sleeve, they may be calculated by means of the 
following relationships: 
 
 ri+1, j = ri+1/2, j = (x2

i+1/2, j + y2
i+1/2, j )1/2 (24) 

 
 βi+1/2, j = tg-1(xi+1/2, j / yi+1/2, j ) (25) 
 
 βi+1, j = βi+1/2, j + φi+1 - φi  (26) 
 
 xi+1, j = ri+1 sin βi+1, j (27) 
 
 yi+1, j = ri+1 cos βi+1, j (28) 
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Now, before proceeding to computation, it is highly 
advantageous to convert all equations to a non-dimensional 
format. This normalization is done through the reduction of 
dimensional variables by means of the cylinder radius r0 . For 
instance: 
 
 x* = x/r0  ;  h* = y/r0  ; … etc. (29) 
 
In this context, the reduced volume V* of the accretion and the 
reduced torsional stiffness k* are defined as: 
 
 V* = V/(r2

0 L) (30) 
 
 k* = k/(ρ r3

0 L)  (31) 
 
respectively. It may be seen that k* integrates the accretion 
density ρ. Hence, a denser accretion translates into a decrease 
of the reduced torsional stiffness. 
 

E.  General Results 
The above relationships have been programmed and solved 

by means of a specialized commercial software. Hence, the 
cylinder periphery has been divided into 90 four-degrees 
sectors and the icing precipitation has been applied at a rate 
varied between 0.1 r0  and 0.4 r0. Figure 4 shows the evolution 
of the accretion shape for precipitation heights of 0, 2, 4, 6, 8 
and 10 times the cylinder radius r0, a reduced torsional 
stiffness k* of 32 and a precipitation angle ψ of 45°. It may be 
observed that the ice sleeve takes a more circular shape as 
precipitation goes on and the cylinder rotates. It has also been 
noted that for lower torsional stiffness, the cylinder can make 
several turns about its central axis. In such cases, the ice 
sleeve gets ever more circular. Figure 5 illustrates the 
evolution of the ice shape for the same precipitation heights 
and angles as above but, this time, for a reduced torsional 
stiffness k* increased four times to the value of 128. It may be 
observed now that the ice sleeve takes a more elongated 
shape, more or less aligned with the direction of the 
precipitation. At that point, due to its own weight, it tilts down 
appreciably, thus increasing the area of the exposed face all 
the more. 

Fig.  4.  Development of the contour of the accretion for a reduced torsional 
stiffness k* = 32. Precipitation angle ψ = 45˚. 

 

 
Fig.  5.  Development of the contour of the accretion for a reduced torsional 
stiffness k* = 128. Precipitation angle ψ = 45˚. 
 

Figure 6 shows the reduced volume of the ice sleeve, a 
parameter proportional to the ice load, as a function of 
reduced precipitation height up to 10, for different reduced 
torsional stiffness ranging from 16 to 256. As a reference 
mark, it may be noted on the basis of (4) that the reduced 
precipitation height should go up to approximately 8 for the 
ice sleeve to reach a radial thickness of 45 mm on a rotating 
cylinder 35 mm in diameter. It is observed that, for a given 
precipitation height, the volume of the accretion increases as 
the torsional stiffness decreases. It is also found that the rate 
of growth of the ice sleeve increases all the way as the 
precipitation height increases. Also depicted in Fig. 6 are two 
curves corresponding to the volume of the ice accretion on a 
rotating rigid cylinder or equivalently, a rigid cylinder 
mounted on highly flexible torsional springs, identified k* = 0, 
on the one part, and on a fixed rigid cylinder, or equivalently, 
a rigid cylinder mounted on highly stiff springs, identified k* 
>>1, on the other part. It may be seen that these two curves 
delimit a domain which encloses all the other curves 
corresponding to intermediate torsional stiffness. This 
confirms that the volume of the ice accretion or, equivalently, 
the ice load, reaches respectively a minimum on a fixed rigid 
cylinder and a maximum on a rotating rigid cylinder. The 
difference in the volume of accreted ice is entirely due to the 
rotation of the cylinder 
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Fig.  6.  Volume of the accretion as a function of precipitation height for 
different torsional stiffness. 
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To support that conclusion, Fig. 7 depicts the volume of the 

accretion as a function of the angle of rotation of the cylinder 
for four different reduced precipitation heights. It may be 
observed that each curve departs from a specific threshold 
value corresponding to a non-rotating cylinder and rises up to 
a specific ceiling value at angles of rotations of about 200° to 
240°, thus converging to the freely rotating cylinder value. 
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Fig.  7. Volume of the accretion as a function of the cylinder rotation for 
different precipitation heights. 
 

Interestingly, it was found that the above curves may be 
expressed in a unified way through the following empirical 
relationships: 
 
 V*φ 2h* + (h*2/ π) sin(9φ/22)    φ < 220° (32) 
 
 V*φ 2h* + (h*2/ π)      φ > 220° (33) 
 
The similarity between these last expressions and (5) is 
obvious, the first term on the right hand side representing the 
inevitable share of the accretion and the second term 
representing the share due to rotation. 

III.  3-D MODELING 
To work out a complete three-dimensional model which 

could be used to determine the evolution of the ice accretion 
as a function of precipitation along a flexible cable strung over 
a long span involves several difficulties. Such an exercise is 
out of the scope of this paper. Instead, the 3-D problem is 
approached in an approximate manner by means of the above 
2-D numerical model, setting the torsional stiffness of the 
spring-mounted rigid cylinder in such a way as to yield a 
rotation equal to the average rotation of the cable along the 
span, under the influence of the same distributed torque, 
assumed to be uniform. 

 
The rotation of a cable which is loaded by such a uniform 

torque τ due to the eccentric accretion of ice is governed by 
the following differential equation: 
 
 d2φ/ds2 = -(τ/GJ) (34) 
 
where s and GJ designate the coordinate along the cable axis 
and the cable torsional stiffness respectively. This equation is 

easily solved yielding for the rotation φ(s) of the cable along 
its central axis: 
 
 φ(s) = (τ/2GJ)(Ls – s2) (35) 
 
where L is span length, and: 
 
 φmean = τ L2/(12GJ) (36) 
 
stands for the average rotation φmean of the cable. Since the 
rotation of the spring-mounted rigid cylinder in the 2-D case 
writes: 
 
 φ = τ L/keq (37) 
 
it comes out that the equivalent torsional stiffness keq for the 
2-D model may be expressed: 
 
 keq= 12GJ/L (38) 
 

IV.  APPLICATION TO AERIAL CONDUCTORS AND 
GROUND WIRES 

 The above icing model will now be used to determine the 
propensity to icing of a single power conductor in relation to a 
single ground wire, on the one hand, and to a quad bundle of 
the same conductors, on the other hand. 
 

A.  Single Conductor Vs Single Ground Wire 
The single ground wire to be looked at now for its relative 

propensity to icing is a 12.7 mm diameter, 7-wire steel strand 
which has been subjected to torsion tests on an outdoor test 
span [6] yielding a torsional stiffness of 24.9 Nm2/rad. on the 
average. This stands at about 20% of the theoretical maximum 
torsional stiffness assuming the cable to behave as a solid, 
single-piece bar. 
 

The conductor to be compared to is a Bersfort, a 35.6 mm 
diameter 48/7 ACSR (aluminum-conductor-steel-reinforced). 
For lack of a measured value as above, its actual torsional 
stiffness is assumed to take up as well 20% of its maximum 
value as a solid single-piece bar, i.e. GJ = 623 Nm2/rad. The 
reduced equivalent torsional stiffness keq* of both cables may 
then be determined from the following expression: 
 
 keq* = 12GJ/(ρ r3

0 L2) (39) 
 
which results from the combination of (31) and (38). As 
applied to both cables for a span length ranging from 200 m to 
400 m and glazing ice with a density of 8,82 kN/m3, (39) 
yields close values for their reduced equivalent torsional 
stiffness, ranging from 3.32 to 0.83 for the ground wire and 
from 3.76 to 0.94 for the Bersfort conductor. 
 

Hence, with reference to Fig. 6, it is obvious that with such 
a low torsional stiffness, both the ground wire and the Bersfort 
conductor would rotate almost freely under the influence of 
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any significant eccentric ice load and, as a result, would 
collect ice to a maximum. As (4) indicates, the radial thickness 
(r - r0) of the quasi-circular ice sleeve would be the same on 
both cables for a given precipitation height. However, the 
resulting ice load on the Bersfort conductor would obviously 
be higher due to its larger diameter. 
 

B.  Single Conductor Vs Bundled Conductors 
For power transmission lines operating at extra high 

voltage, twin, triple and quad bundled conductors are largely 
used. These bundles are usually fitted with spacers staggered 
along the span in order to maintain the geometry and control 
vibrations under adverse wind and ice effects. Such an 
arrangement, incidentally, results in a tremendous increase in 
the torsional stiffness of the system. This has to be taken into 
account when assessing the propensity of bundled conductors 
to icing. For instance, it may be demonstrated that for small 
rotations, the ratio of the torsional stiffness kbundle of a quad 
bundle at a spacer to the torsional stiffness ksingle of a single 
conductor of the same type may be written: 
 
 kbundle/ ksingle = 2He2/GJ + 4 (40) 
 
where H designates the conductor tension and e the 
subconductor spacing. The first term on the right hand side 
results from the bundle effect on torsional stiffness while the 
second term corresponds to the four individual subconductors. 
Computed for icing conditions conducive to 50% and 75% of 
the 180 kN breaking load of the Bersfort conductors used in a 
quad bundle with 450 mm spacing, the above ratio comes out 
to 63 and 92 respectively.  
 

Hence, in assessing the propensity of such a quad bundle to 
icing, it appears reasonable to consider the subconductors 
individually over one subspan length only as opposed to a full 
span length, as if, for all practical purpose, they could not 
rotate at the spacers. This way, their effective free length 
decreases quite significantly from 200 m to 400 m down to, 
typically, 40 m to 70 m. For such shorter lengths, the reduced 
equivalent torsional stiffness of the Bersfort conductor ranges 
from 94 and 27 approximately, according to (39). 
 

Now, using Fig. 6 to interpolate the predicted volume of the 
accretion on a single subconductor for such an equivalent 
torsional stiffness and comparing to that of a single conductor 
used in solo yields Fig. 8. It may be observed that the 
predicted volume (or equivalently, load) of the accreted ice on 
a given conductor as used in a spacered quad bundle may be, 
in the shortest subspans, as low as 60% and, in the longest 
subspans, as low as 70% of the volume of ice accreted on a 
similar conductor as used in solo. That would occur for a 
reduced precipitation height h/r0 of about 5 and 3 respectively 
translating a radial ice thickness of about 28 mm and 17 mm 
on the single Bersfort conductor. The relative lower 
propensity of the quad bundled conductors to icing decreases 
for higher precipitation heights but, yet, the ice load ratio may 
be as low as 70% in the shortest subspans for precipitation 

conducive to a 45 mm radial thickness of ice on the single 
conductor.  
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Fig.  8.  Ratio of the ice load on a quad bundled conductor to the ice load on a 
similar single conductor as a function of precipitation height.  
 

IV. CONCLUSION 
It has been demonstrated by means of a dedicated numerical 

model that the propensity of cables to icing is bracketed 
within two limits translating accretion on a fixed rigid cylinder 
on the low side and a freely rotating cylinder on the high side. 
Using this model, it has been shown that power conductors 
and ground wires used in solo over usually long span lengths 
have an equivalent propensity to icing at an equivalent wind 
speed. As their torsional stiffness is low, both rotate almost 
freely on their central axis and as a result, collect maximum 
ice for any significant icing precipitation. In contrast, as a 
result of their much higher torsional stiffness, bundled 
conductors, which use a number of spacers staggered along 
the span, are less prone to icing than similar single conductors. 
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