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Abstract--The aim of this paper is to present theoretical 
investigations introducing a new technique for the purpose of 
measuring atmospheric-ice adhesion. This research is focusing on 
the development of a macroscopic and direct technique for 
measuring ice adhesion using embedded piezoelectric sensors. 
Other mechanical methods for measuring ice adhesion as well as 
factors influencing such measurements are briefly reviewed. The 
advantages of the present method over these are discussed. The 
analytical solution of a non-symmetric bimorph constituted by a 
layer of atmospheric-ice deposited on an elastic substrate, driven 
into harmonic vibration is obtained. Analytical and theoretical 
equations of shear and bending stresses due to a vibrating load in 
a cantilever bimorph are derived. The piezoelectric charge 
coefficient is used to predict the charge density induced on the 
piezoelectric film. The discrepancies in Young moduli and the 
geometric dimensions of the two layers are taken into account in 
the modeling. 
 

I.  NOMENCLATURE 
Atmospheric-ice, ice adhesion strength, cohesive and 

adhesive failure, PVDF films 

II.  INTRODUCTION 
HE unprecedented January 1998 icing storm that hit  wide 
areas of Quebec, Ontario and the Maritimes clearly 

illustrates the severity of the problems possibly resulting from 
atmospheric ice accretion on overhead power lines, such as 
structural damage and electrical outages, with related 
consequences for the affected utilities and populations [1]. 
The removal of ice deposits using anti-icing or ice phobic 
materials has not yet been achieved. The development of such 
techniques requires a greater knowledge of the physical-
mechanical phenomena at the ice/material interface. 
Moreover, the determination of ice adhesion strength is very 
important for selecting more efficient and economical de-icing 
techniques and for identifying materials with low surface 
energy. It is equally important for determining the mechanical 
energy necessary, at the ice/material interface, for ice removal. 
In fact, few studies have focused on the basic mechanism 
underneath ice adhesion because of its high sensitivity to test 
conditions, such as ice type and structure, temperature and test 

techniques. To the best of our knowledge, ice adhesion 
measurement has been attempted in a variety of ways, but the 
results are scattered and difficult to compare [2]. 
Consequently, this study is necessary because of the 
importance of developing effective ice accumulation 
prevention methods and undertaking more research on ice 
adhesion. 

Because of the brittle structure of ice, the known methods 
in the general field of adhesion measurement are difficult to 
apply. However, with the development of smart/active 
materials like PVDF films as sensors, which allows the 
reversible transformation of mechanical energy into electric 
power, studying the mechanical behavior of materials at the 
interfaces is easier. 

The aim of this study is to obtain theoretical equations of 
stress induced by a vibrating load at the ice/material interface. 
Using embedded piezoelectric sensors enables us to develop a 
macroscopic and direct measurement technique for 
determining mechanical stresses at the atmospheric-
ice/substrate interface. 

In what follows, the next section will be devoted to a brief 
review of different mechanical and macroscopic methods for 
measuring ice adhesion, and of factors influencing ice 
adhesion strength. In section IV, there will be a description of 
the setup geometry, modeling of structure and its advantages 
in comparison with the existing methods. In section V, the 
analytical modeling and the theoretical equations of shear and 
bending stresses for this configuration will be presented. In 
the final section, the advantages of using piezoelectric films 
(PVDF) as stress sensors will be listed and related sensor 
equations for predicting the charge density induced on the 
piezoelectric films will be explained. 

III.  TECHNICAL REVIEW 
Few mechanical methods make it possible to measure the 

mechanical adhesion force of ice on different materials  [2]. 
The reason is that, in the range of ordinary forces, ice is a 
brittle material and its cohesion force is weaker than its 
adhesion force, thus making cohesive failure is more likely. A 
simple tensile test with stress applied normally to the interface 
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frequently results in a fracture within the ice, known as 
‘cohesive break’. On the other hand, an ‘adhesive break’, 
occurring on the interface itself, is often observed when a 
shear stress is applied in direction of the plane of the interface. 
This geometry is therefore more commonly used in the study 
of ice adhesion  [3]. In a previous study, a complete review of 
ice adhesion measurement methods has been carried out 
including both macroscopic and microscopic/nanoscopic scale 
tests [2]. They are also compared as to their performances and 
limitations. However, a brief review of the existing 
mechanical methods seems necessary for a general overview. 

Adhesion strength is energy per unit surface required to 
separate ice from its substrate in adhesive failure. The basic of 
an adhesion test involve a load applied to adhesive/substrate 
system until failure occurs. Shear mode tests [4], such as the 
“Lap Shear Test” or, “Torsion Shear Test” are more common.  
In the Torsion Shear Test the adhesive layer is formed 
between a fixed plate and a flat disk, which is rotated, with 
measurement of force for failure. In “Cylinder Torsion Shear 
Test” the ice freezes between a hollow cylinder and central 
core, one of which is rotated and the torque measured. In 
“Axial Cylinder Shear Test”, for which the ice is deposited 
between a hollow cylinder and central core, the applied force 
is axial. Fig. 1, on left-hand side exhibits the “Cone Test” 
where cone angle . H1 is application of axial 
force which results in combination of tensile and shear stress. 
H2 is application of torsion force which results in shear stress 
within the ice. When it will result as the Lap Shear 
Test While  it can give two different results. By applying 
torsion force, H
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2, it results as the same as the Cylinder Torsion 
Test, and with axial force, H1, it results as the same as the 
Axial Cylinder Shear Test  [4].There are other techniques like 
“Tensile Tests” and “Peel Tests” where the ice is frozen onto a 
rigid base and an overlapping free end is pulled away at right 
angles, measuring the force. In “Impact Test” a load is applied 
suddenly on the surface of deposited ice till ice detachment. 
Fig. 1, on right-hand side shows the “Blister Test” in which a 
pressure is applied at the center of the adhering interface, the 
thinner and more flexible member of which is thereby debond 
in blister-fashion with measuring the adhesion force. Another 
method uses a beam on which ice is deposited [5]. An 
instantaneous pressure is applied to the beam by a mechanical 
impulse which leads to ice separation. Ice thickness is chosen 
in order to induce the maximum value of shear stress at the 
interface which is indirectly deduced from measuring the 
applied force and beam displacement. Since in this method the 
thickness of the ice coating is selected to the value for which 
the neutral axis locate at vicinity of the ice/aluminum interface 
that will be a limiting method. The high sensitivity to the 
thickness of ice and insensitivity to measure weak adhesion 
forces, as in the case of ice-phobic materials, can be lead into 
some inaccuracies. 

 
Fig. 1. The Cone Test where cone angle  and The Blister 
Test, two techniques for measuring ice adhesion 
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It is found [4] that in some of the enumerated cases 

increasing rate of applied load is instantaneous and/or the load 
is applied directly on the ice which has a brittle structure. It is 
to be noted that different results may be anticipated using 
different methods. For example, tensile experiments showed 
that the adhesive strength under tension is at least 15 times 
larger than that from shear experiments [4]. It has been found 
that adhesive strength depends on the following parameters: 
rate of loading; substrate characteristics (Young modulus, 
cohesive strength of substrate, surface finish, and surface 
energy); temperature; type of Ice; and how the load is applied. 
Another factor to consider is ice expansion during the 
solidification process, which could also affect some of the test 
schemes. In order to obtain a higher degree of reproducibility 
the solidification processe require a long time, e.g., about 
eight hours to freeze the ice sample completely and about 
forty hours to be relaxed the internal stresses before testing. 
Indeed, it has been shown that paying attention to sample 
growth and test conditions leads to reproducible results [6].  

IV.  BIMORPH CHARACTERIZATION AND MODELING  
Fig.2 shows the configuration used for modeling. The 

aluminum beam which is used as substrate, has an edge 
clamped and the other free, and is characterized by the 
following dimensions: thick (z coordinate), b wide (y 

coordinate) and long (x coordinate). The ice layer is 
deposited on this alumina substrate with the same length and 
width. A vibrating load is applied at the free end as shown in 
Fig.2. The coordinate 

sh
L

x  axis passes through the ice/material 
interface. The Piezoelectric films can be placed on the 
aluminum surface before ice deposition. As stress distribution 
varies along the beam and is a function of x , then the 
piezoelectric films length is set relatively small in order to 
sense homogenous stress while their width is the same as the 
beam. Assuming that the piezoelectric film thickness is very 
thin compared to the substrate and ice thickness. Hence, the 
mechanical influence of the piezoelectric film has not taken 
into account. One of the main advantages of this configuration 
is that the thickness of the ice or substrate is not confined by 
the position of the neutral axis, as in the case of the presented 
method in [5]. In this configuration, adhesive failure is more 
likely, because of the creation of the shear stress at interface. 
The rate of applied load is incremental and the load is applied 
on the substrate surface not on the ice directly which has a 
brittle structure. 
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Fig. 2 Geometry and coordinates of the model configuration 
 

A harmonic vibration is subjected to this structure that 
results deflection . For this modeling, two 
important assumptions are made. First the beam thickness is 
supposed to be very small compared to its length, so that 
strain and stress along the z axis are equal to zero. Second, the 
structure width is assumed small compared to its length, hence 
strain and stress along the y-direction is also equal to zero. So 
the bending displacement or deflection   reduces 
to . This displacement occurs along z-direction and is a 
function of the x coordinate. Assuming that the bimorph 
undergoes small deflections in the linearly elastic region, and 
has a uniform cross-section then the differential equation of 
motion for the bending displacement of the beam is known.  
Rotary inertia effects have not been considered. The bending 
displacement is obtained of the moment equilibrium in the 
structure. According to the above assumptions, the bending 
displacement along the z-axis can be written as 

),,,( tzyxw

),,,( tzyxw
),( txw

txWtxw ωcos)(),( =              (1) 
Or the real part of 

tjxWtxw ωexp)(),( =              (2) 
This beam transmits a shear force and a bending moment. 

Note that the x axis must be replaced from the plane of 
interface and located along the undeformed neutral axis of the 
beam. Therefore the first step is determining the neutral plane 
position.  

V.  ANALYTICAL MODELING AND THEORETICAL EQUATIONS 
OF SHEAR STRESS AND BENDING STRESS  

A.  Determination of Neutral Plane Position 
When a beam is bent one side narrows and the other side 

lengthens. Between the two, there is a neutral plane for which 
the bending stress is equal to zero and shear stress has its 
maximum value. The coordinate origin, the x axis, must be 
located at the neutral plane position in order to have the right 
value of  for calculating both bending and shear stress. The 
neutral plane position can be calculated using the moment 
equilibrium of the structure. It is carried out by calculating the 
stress in a cross section of the bimorph. The neutral plane is 
located at an unknown distance  from the interface as it is 
showed in Fig.2. Fig.3 shows the bending stress repartition in 
a longitudinal element of the beam having a length of . 
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Fig. 3 Bending stress repartition in an element  
 

In each material, the stress variation versus the z coordinate 
is linear and the element equilibrium requires the sum of 
normal forces to go to zero [7], 

0== ∫ dAF xx σ                    (3) 

where xσ  is the bending stress. Considering a section made 

of two different materials with Young's modulus and 

shown in Fig.3, 
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where  is the maximum strain at surfaces as shown in 

Fig. 4, and  are the Young’s modulus of the substrate 
and ice. After simplification, 

maxS

is EE ,

( ) 222 )/(/1 TisiisB zEEzEEz +−=                                (6) 
Assuming the neutral axis is located within the ice; the ice and 
substrate thicknesses are known, then substitution of 

iiB zhz −= and isT zhz += in (6) gives, 

sisi

sisi
i hEEh

hEEhz
)/(22

)/( 22

+
−

=              (7) 

where is ice thickness and is substrate (AL) thickness. If 

the obtained value for is negative, it means that the NA is 
located in substrate. As it was expected in the case of having 
one material the NA is located at the mid plane. The 
coordinate origin, 

ih sh

iz

x  axis will now be located at the coordinate 
 from the ice/material interface.  iz

B.  Determination of Deflection (Bending Displacement) 
Assuming that along the beam, the elastic moduli, inertia, 

and cross section area are constant. A vibrating force is 
applied at the free end of bimorph on the free surface; with 
constant amplitude have a form of )exp(),( 0 tjFtLf ω= . The 
differential equation of motion for the bending displacement 
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of the beam (Euler-Bernoulli Beam theory) is given by [8]-
[9]-[10]-[11]: 

),(),(),(
2

2

4

4

tLf
t

txwA
x

txwEI =
∂

∂
+

∂
∂ ρ          (8) 

where EI  is the global flexural rigidity, which is given by 
(22) and ρ  is the total density si ρρρ +=  where iρ  and 

sρ are ice and substrate  densities, respectively, and  is the 

cross section area, . A separation of 
variables is assumed of the form [11]. The 
solution of temporal equation gives ,  

A
)(* si hhbA +=

)()(),( tTxWtxw =

)sin()cos()( 21 tTtTtT ωω +=              (9) 

The coefficients  and  can be calculated only if two 
initial conditions (initial deflection and velocity) are specified. 

1T 2T

The spatial equation comes [10], 
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where β  is the flexural wave number given by 

EIA /24 ωρβ =                  (12) 

The first resonance frequency of the structure is given by [14], 

0
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where 875.11 =α  , hence 2/1

1
1 )(
ω
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where ω  is the vibrating force frequency. The general 

solution to equation (11) leads to 

xAxAxAxAxW ββββ sincossinhcosh)( 4321 ++++= (15) 

where the coefficients are determined using 

four boundary conditions of cantilever beam as follows: the 

deflection and its first derivative at clamped end is equal to 

zero. At the free end the moment is equal to zero while the 

transverse shearing force is equal to the amplitude of the 

applied force. Solving the system formed by these equations 

leads to  
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For such a cantilever beam the longitudinal strain is expressed 

as [Ref.], 

2

2

dx
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C. Determination of Bending Moment 
This planar beam, i.e., where all forces are exerted in the 

same plane, is a system of two internal stress components, 
shear and bending stresses. The bending moment is the result 
of bending stress of structure is given by [7], 

dAzM x∫−= σ                      (19) 

According to primary assumptions and simplification of 
Hook’s law, the longitudinal stress is given by [Ref.], 

xx
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ν
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Substitution in (18) results, 
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where ν  is Poisson’ s ratio. For the case of a section made of 
two different materials, the integral is divided into two parts, 
one for each elastic material         
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where iν  and sν  are Poisson’s ratio of ice and substrate, 
respectively. The terms inside the parentheses represent the 
moment of inertia of the section about the neutral axis, 
The global bending moment is, 
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The previous relation can be seen from Euler-Bernoulli Beam 
Theory [14] , which expresses bending moment as a function 
of deflection. The global bending moment can also be written 
as,  

2

2

dx
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where EI is the global flexural rigidity of the structure, 
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C.  Determination of Shear Stress 
Assuming the bimorph undergoes small deflections in the 

linearly elastic region, and has a uniform cross-section. 
According to Euler-Bernoulli Beam theory shear force can be 
expressed as the third derivative of transverse deflection, 

3

3

3
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The shear stress τ generated from the shear force can now be 
calculated as [12] [14], 
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Ib
VQ

=τ                       (26) 

where   is the first moment of the area about the neutral 
axis. For composite areas, i.e., ice and substrate, the first 
moment of area can be calculated for each part and then added 
together. The equation for Q  in this case is 

Q
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j zAQ ∑
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where A* is the area of the part of the cross section that is 
considered,  is the vertical distance from the centroid of 

the cross section to the centroid of A* as shown in Fig.4 and 

*
jc

z

I  is the moment of inertia of the section about the neutral 
axis. 

 
Fig.4.   is the vertical distance from the centroid of the cross section to the 

centroid of A*. 

*cz

 
Substituting (25) in (26) gives the shear stress as a function of 
bending displacement, 

3

3

dx
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b
QE−=τ                           (28) 

Assuming that before ice detachment, in the linearly elastic 
region, the displacement and the strain tensor are the same for 
both substrate and ice at interface, because they are closely 
linked. 

D.  Determination of Bending Stress 
Bending stress is zero at neutral axis and assumed to 

increase linearly to a maximum at the outer fiber of the 
section. Solving the moment equation for stress gives us the 
bending stress within the ice [7], 

i
G

xi z
I

M
−=σ                     (29) 

where  is the global bending moment, is the distance 
from the neutral axis within the ice, and 

GM iz
I  is the moment of 

inertia of the section about the neutral axis of non-
homogeneous beam which can be expressed as [7]. 

sisi IEEII )/(+=            (30) )( is YY >
Substituting (23) in (29) gives the bending stress of ice as a 
function of bending displacement, 
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dx

WdE 2

2

−=σ                     (31) 

The bending stress of the substrate is expressed as, 
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sz is the distance from the neutral axis within the substrate. 
By substituting (23) in (32) bending stress as a function of 

deflection is given by,    
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VI.  PVDF ADVANTAGES AND SENSOR EQUATIONS 
With the advent of multi-layer materials and the 

development of active/smart materials, it became possible to 
use them for studying the mechanical behavior of materials 
with the help of them. Smart/active materials take input 
energy in one form then convert it in another form. Like water 
from a sponge, piezoelectric materials generate charge when 
squeezed. It can develop an electrical charge proportional to a 
change in mechanical stress. Piezoelectric film can be used to 
sense the adhesion force at the ice/substrate interface. 
Hereafter the advantages of using piezoelectric films (PVDF) 
as stress sensors will be mentioned and related sensor 
equations to predict the charge density induced on the 
piezoelectric film will be explained. 

For measurement purposes, using piezoelectric films as 
sensors has the following advantages. They are thin, light, 
relatively low in cost, highly sensitive to electrical induction 
and mechanical load, and they can easily be manufactured into 
any desired shape. They can also be easily miniaturized, 
mounted on, and integrated into the structure. Moreover, they 
are especially interesting due to their high sensitivities to 
small variations in applied loads although their function 
depends on temperature variations [11]. Indeed using PVDF 
films in this configuration allows measuring the combination 
of shear and bending stresses anywhere at ice/ material 
interface. 

The fundamental piezoelectric coefficients for charge and 
voltage predict the charge density and voltage developed by 
the piezoelectric. Piezoelectric charge and voltage coefficients 
are each assigned two subscripts: one referring to the 
electrical axis, the other to the mechanical axis. In charge 
mode the generated charge density is given by 

nnTdAq 3/ ==ρ           (34) 3,2,1 orn =
where ρ is the charge density developed,  is the charge 
developed,  is the electrode (piezoelectric film) area,   is 
the Piezoelectric coefficient, n is the axis of applied stress, and 

 is the stress. It can be seen that by measuring the charge 
developed on the film, the direct measurement of stress, 
superposition of bending and shear stress will be possible. 

q
A

nd3

nT

στ +=T                    (35) 
   Assuming the piezoelectric film dimensions are b as width 
at y-direction and  as length at x-direction. As it is shown 
before, the induced stress along the piezoelectric film is a 
function of x, therefore the distributed electric charge due to 
induced stress on the piezoelectric film is given by, 

e

Adq
area
∫∫= .ρ                     (36) 

Substituting (34) and (35) in (36) results in, 
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dxdydq
b e

n )(
0 0

3 στ += ∫ ∫               (37) 

The stress distribution along the y-axis is constant, thus 

dxdbq
e

n )(.
0

3 στ += ∫                   (38) 

where τ  and σ  are given by (26), (31), and (33). Therefore 
the total charge developed on the piezoelectric films can be 
calculated as first and second derivatives of structure 
deflection. 

VII.  CONCLUSION 
The analytical solution of deflection of a non-symmetric 

cantilever bimorph constituted by a layer of ice deposited on 
an elastic substrate, driven into harmonic vibration is 
obtained.  
The neutral plane position of the structure as a function of ice 
and substrate thicknesses is obtained. Bending displacement 
of the structure is derived with the help of Euler-Bernoulli 
Beam theory. The moment, the shear and bending stress of the 
structure are obtained as functions of bending displacement. 
The piezoelectric charge coefficient is used to predict the 
charge density induced on the piezoelectric film. The 
discrepancies in Young moduli and the geometric dimensions 
of the two layers are taken into account in the modeling. 
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