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Abstract— EDF has a weather alarm service for its distribution 
network, regarding wind, wet-snow and rime accretions, and 
lighting. For dimensioning and event severity estimation, risk 
maps for each parameter are produced, based on 20-year return 
levels (see the other presentation by C. Laurent). For forecasting 
as for risk maps, it is necessary to convert meteorological 
forecasted parameters into rime or wet-snow loads for the wires. 
This paper refers to rime accretion calculation, for which two 
modelling approaches have been tested and compared to a real 
rime event in France. The two models are based on the same 
principle but differ in the way of evaluating collection efficiency, 
rime density and mass losses. One is a French model, written by 
Pezard, Gayet and Admirat and the other one is the Makkonen 
model. The comparison shows that Makkonen model gives 
realistic results both for diameter and for overload, when the 
other one is better for overload than for diameter evaluation, but 
for different values for liquid water content and droplet 
diameter. Thus once again the importance of these non routinely 
measured parameters on the model results is shown, and the two 
approaches are considered for the evaluations devoted to the 
weather alarm service. 

I.  INTRODUCTION 

R ime overloads occur when a wire stays inside an icing 

cloud for a long time. They are evaluated from meteorological 
conditions using mathematical modelling. The approach used 
for EDF weather alarm service was based on a model 
previously developed by Pezard, Gayet and Admirat [3]. This 
approach has been compared to the one proposed by 
Makkonen since 1984 [6,7]. The two models will be 
compared on observed data measured for a real rime event in 
France. Firstly, the two models will be described, then the 
observed data will be presented and finally the results will be 
compared, before coming to discussion and conclusion. 

II.  RIME OVERLOAD MODELLING 
Ice loads form due to particle in the air colliding with an 

object, here an electrical wire. The maximum rate of icing per 
unit area of the wire is determined by the flux density of these 
particles, which is expressed as the product of their mass 
concentration, w (liquid water content of the air, kg/m3), and 
their velocity relative to the wire, Vi (m/s). Then, the rate of 
icing due to any icing phenomena (rime, freezing rain or wet 
snow) may be expressed as: 
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where A is the cross-sectional area relative to the direction 
of the particle velocity (m2) [7]. Coefficients αι represent 
different phenomena which may reduce this rate and they vary 
between 0 and 1. 

Coefficient α1 represents the collision efficiency, that is the 
ratio of the flux density that hits the wire to the maximum flux 
density. Small particles tend to follow the streamlines and may 
then be deflected from the wire, so for rime loads, α1 is 
smaller than 1. 

Coefficient α2 represents the sticking efficiency, that is the 
ratio off sticking particles to the hitting ones. It is reduced 
when the particles bounce from the surface. For rime, α2 can 
reasonably be set to 1 [7]. 

Coefficient α3 represents the accretion efficiency, and is 
one if the particle freezes immediately on the object (dry 
growth icing) and reduced from 1 otherwise (wet growth 
icing). In this latter case, α3 is determined from the heat 
balance. 

Then, for rime icing, equation (1) becomes: 
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where V is the wind velocity (m/s) considered as 
perpendicular to the wire at any time, which maximises the 
calculated overload. 

The ice deposit diameter D (m) is thus evaluated at each 
time-step i by: 
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where ρ is the ice density (kg/m3) and M the mass per 
meter wire (kg/m). 

The two models used here differ in their evaluation of αi 
coefficients and of ice density, as detailed below. 

A.  Pezart et al. model 
This model represents only the dry growth icing conditions, 

and thus, α3 is 1. 
 

    1)  Calculation of α1 
Coefficient α1 is considered as the sum of a dynamical part 

α1dyn, due to the streamlines around the wire, on one hand, and 
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of a roughness part α1rug on the other hand. The dynamical 
part is evaluated from Langmuir and Blodgett theory [5] : if it 
is assumed that the icing object is cylindrical, an analytical 
solution exists for the airflow around the object and α1 can be 
parameterized using two dimensionless parameters: 
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where ρw (kg/m3) is the water density, dm (m) the median 
volume diameter of the particles, µa (kg/m/s) the absolute air 
viscosity and D (m) the cylinder diameter; 

and  
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the droplet Reynolds number, with ρa (kg/m3) the air 
density. 

Then, the dynamical part is evaluated as follows: 
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The roughness part α1rug is added to still allow accretion 
growth when wind speed is low and ice diameter is of a few 
centimeters [3]. It is calculated as: 
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    2)  Rime density calculation 
Rime density is evaluated from the Macklin parameter 
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(v0 (m/s) being the droplet impact speed and ts (°C) the surface 
temperature), but using V, the wind speed, instead of v0 and 
air temperature Ta for ts as follows: 
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The model includes then a term for mass loss, considering a 
linear and constant part, so that finally: 
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with kexpo=4.10-16s-1 and klin=4.10-4gs-1. 
 

B.  Makkonen model 
The model is designed both for dry- and wet-growth. 
 

    1)  Calculation of α1 
α1 is also evaluated from Langmuir and Blodgett theory [5], 
but using more recent numerical solutions provided by Finstad 
et al. [9]. With K and Re defined as previously (equations 4 
and 5): 
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For K<0.18,  α1 = 0.01 and for K>103,  α1 = 0.99. When Φ 
is out of range, Makkonen 1984 [6] formulae are used. 
 
    2)  Calculation of α3 
α3 is evaluated in wet-growth condition by resolving the heat 
balance equation for the surface temperature ts being 0°C. It 
leads to: 
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where h, the convective heat transfer coefficient, is calculated 

as 
D
Nuk

h a= , ka being the heat conductivity of air (W/m/K) 

and Nu the Nusselt number, estimated from the cylinder 

Reynolds number as  (85.0Re032.0=Nu
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The calculation is not detailed since the simulated case here is 
dry growth. 
 
    3)  Rime density calculation 
Rime density is also evaluated using Macklin parameter R 
(equation 6), but v0 is now calculated from the numerical 
solution of Langmuir and Blodgett theory [5] proposed by 
Finstad et al. [9], for the same range for K and Φ as above: 
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For K<0.18,  v0 = 0.01V and for K>103,  v0 = 0.99V. As 
previously, Makkonen 1984 [6] formulae are used when 
parameters K and Φ are out of range 
 
For ts, cylinder surface temperature, two calculations have 
been tested : once, ts has been evaluated in resolving the heat 
balance with α1=1, and then, ts has been taken as the air 
temperature Ta. Both values lead to similar results, so it seems 
reasonable to take the air temperature value for the surface 
temperature, which avoid a quite sophisticated calculation. 
 
Finally: 
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III.  OBSERVATIONAL DATA 
Measurements concerning real rime cases are rare. An event 
occurred in the center of France between the 1st and the 7th of 
December 1990. The meteorological parameters have been 
measured in Champclause, where a line broke, and it was used 
by Pezard et al to calibrate their model [3]. The 3-hourly 
reconstituted evolutions for temperature and wind speed 
during the first 5 days of the event, which were the most 
important for the ice load, are the following: 

Champclause 1-5/12/1990 : Temperature
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Fig. 1. 3-hourly temperature evolution during the event 
 

Champclause 1-5/12/1990 : wind speed
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Fig. 2. 3-hourly wind speed evolution during the event 
 
Observations conducted when the ice load was maximal 
mention ice deposit diameters of 12cm with a mass of 
3.1kg/m. Locally, ice deposit of 18cm were seen, for wires 
particularly exposed to wind. The ice density is found around 
300 kg/m3. 

IV.  MODEL RESULTS FOR THIS CASE 
The calculations were conducted with a wire diameter of 1cm. 

A.  Pezard et al. model 
Liquid water content and median volume diameter of droplets 
were unfortunately not measured during the event. Pezard et 
al. tested a large number of combinations for these parameters, 
taken in the range measured in center of France during 
previous studies, and finally retained w=0.22g/m3 for liquid 
water content and dm = 11µm for droplet diameter, for which 
they obtained the best fit [3]. Using these values and the 
observed evolutions of temperature and wind speed previously 
mentioned, the model calculates an ice deposit of diameter 
8,3cm for a mass of 3,3kg. Compared to observed ice load 
dimensions, the mass is correctly simulated, while the 
diameter is under-estimated. One must mention that Pezard et 
al. have calibrated their model so that the simulation of the 
mass is correct, even if diameter is less correct, because for 
risk issues, mass in more important than diameter. 

B.  Makkonen model 
When using the same values for liquid water content and 
droplet diameter, Makkonen model leads to a diameter of 
9.3cm for a mass of 1.2kg/m. If diameter is better simulated 
than above, ice load is really underestimated. 
As liquid water content and droplet diameter were not 
measured but chosen in a range measured in center of France 
(  and 33 /72.0/11.0 mgwmg ≤≤

µmdmµm 2.163.7 ≤≤ ) [3], other values for these 
parameters were tested and the best fit (in terms of minimized 
gap between simulated and observed values) was found for w 
= 0.30g/m3 and dm = 15µm : the obtained diameter and mass 
are respectively 12.4cm and 3kg/m. The following figures 
show the ice deposit diameter and mass evolution calculated 
with both models with their “best fit” input parameters: 
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Fig. 3. Ice deposit diameter evolution computed with Makkonen model and 
with Pezard et al. model 
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Fig. 4. Ice load evolution computed with Makkonen model and with Pezard et 
al. model 
 
The calculated mean ice density is 250 kg/m3 with Makkonen 
model, and 610 kg/m3 with Pezard et al. model. This may be 
compared with the measured value of 300 kg/m3. 
The main learning from this study is then the great sensitivity 
of the models to rarely measured parameters like liquid water 
content and droplet diameter. 

V.  CONCLUSION AND DISCUSSION 
Ice loads form on wires when the lines stay in an icing cloud. 
The evaluation of their mass and diameter can be made 
through mathematical modelling of icing. This has been done 
using two approaches based on the same principle, but 
differing in some hypotheses. The comparison of these two 
approaches to one documented case in France showed that the 
best fit is obtained for different values of liquid water content 
and median volume droplet for each model. Using ranges 
measured in France for these parameters, it has been possible 
to determine conditions likely to lead to a correct evaluation 
of ice loads, but regarding only one documented situation. 
Nevertheless, until better, it has been decided to keep the two 
approaches for real time estimation with dm = 11µm and w = 
0.22g/m3 for Pezard et al. model and dm = 15µm and w = 
0.30g/m3 for Makkonen model. 
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