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Abstract—Based on a literature review, this paper presents the 
main methods for estimating T-return-period values of 
Meteorological values to be used as design parameters : classical 
Generalized Extreme Values (GEV) distributions - including the 
famous Gumbel Law - and less classical but useful Peak Over 
Threshold (POT) methods - including Generalized Pareto 
Distributions (GPD). The distribution of extremes from mixed 
parent phenomena is discussed. A particular attention is paid to 
the statistical conditions the initial parent data must respect for 
application of Extreme Values Analysis (independence, identical 
distribution) and the ways to check for these conditions. Tests of 
nullity of the shape parameter (depending on the shape of tail of 
parent law) are described. The problem of precision of estimates 
is evaluated.  

I.  INTRODUCTION 
any codes dealing with the design of overhead lines 

are derived from reliability based design principles 
(CEI60826, CENELEC50341, ASCE74, …). Basically, the 
principle is to design the line for a given reliability level, 
reasonable regarding security, safety and costs. The reliability 
level is often defined by the return period of the climatic load 
that the component must withstand, associated with a 
specified resistance of components. The reference return 
period T is generally 50 years, but can be higher depending on 
the importance of the line, the consequences of a damage, etc. 

To reach the reliability level, one must therefore know the 
climatic parameter XT (wind velocity, ice load, temperature, 
…) of return period T. Of course, T is generally much bigger 
than the period for which we have reliable measured data. So 
how can we know the 50 or 100 years return period wind 
velocity when we have 10 to 20 years (or less) experimental 
data ? The statistical techniques to do this are referring to 
Extreme Values Analysis. 

II.  RETURN PERIOD AND PROBABILITY 
The value XT of a climatic parameter is the value which is 

exceeded, on average, once every T years, T being the return 
period. If P(X) is the probability of not exceeding X in one 
year, T is given by : 
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In this expression, P(X) is the cumulative distribution 
function of the extreme value X. The aim of extreme values 
analysis is to assess the function P(X) for the considered 
parameter : once you have P(X), you can get XT. To do this, 
one must estimate the parameters defining P(X) with a limited 

number of extreme observations of X.  

III.  CONDITIONS FOR ESTIMATION OF EXTREME VALUES 
DISTRIBUTIONS 

Before describing the main forms of P(X) and the way to 
estimate their parameters, we must begin with the statistical 
conditions to be respected so that these estimates are reliable. 
The classical conditions in statistical estimation are usually 
expressed as : “the random variables are independent and 
identically distributed” [1]. 

A.  The “identically distributed” condition 
This condition refers to the homogeneity of the data : the 

selected values must come from the same “parent law” from 
which the extreme value distribution is derived. If the 
“regular” values are not driven by the same law, the extreme 
values law can not be unique. Fig. 1 illustrates a 4-calendar 
years time-series plot of daily maximum wind values in 
Marseille (France). 
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Fig. 1.  Example of 4-years time-series data : maximum daily wind in 
Marseille. The parent distribution is a Weibull law 
 

Checking that the extremes are issued from sequences of 
identically distributed variables implies an analysis of all the 
data, not only an analysis of the extremes. The determination 
of the “parent law” is therefore important. Fig. 1 shows that 
this data should probably be separated in seasons, the summer 
and winter wind distributions being obviously very different 
in this region.  

There are numerous reasons why the data could not be 
homogeneous. The first one is that the measured 
meteorological parameter can be caused by different 
phenomena. For example ice loads can be caused by freezing 
rain, wet snow, rime, … Wind velocity can be caused by 
extra-tropical winter storms, lighting storms, tornadoes, … It 
might be necessary to separate the data depending on the 
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origin phenomena before performing an Extreme Values 
Analysis. An other reason of non homogeneity might be a 
change of a sensor dedicated to the measure of the 
meteorological parameter (anemometer, dynamometer, 
thermometer, …). A faulty instrumentation or changes in the 
environment of the sensor are other possible causes [2]. A 
major cause of non homogeneity – a very discussed one – 
could be a climatic evolution, natural or not, revealing a trend 
in measured values of the meteorological parameter : increase, 
decrease, periodicity, etc. When classical Extreme Values 
Analysis methods are used for the determination of design 
values, the implicit hypothesis is that statistical properties of 
past measured data are supposed to be kept in the future.  

How can we check for this homogeneity ? As mentioned in 
[2], “a simple time series plot of the data may be sufficient to 
reveal the presence of trends or step jumps, and is a necessary 
precursor to further analysis”. More advanced techniques are 
available to answer questions such as : Do two distributions 
have the same means or variances? Are two distributions 
different? One should always wait for numerical differences, 
and test whether these differences are statistically significant. 
Most books dealing with statistics describe such tests [1]. The 
test of Kolmogorov-Smirnov is among the most useful. It 
gives an answer to the question : Are two datasets drawn from 
the same distribution function or from different distribution 
function? This test is described in Appendix. Reference [3] 
provides numerical tools to implement it. It can be applied to 
test the similarity of yearly distributions of the meteorological 
parameter for each couple of years, or for the first and the 
second half of the time series, etc. 

B.  The “independence” condition 
This condition means that the selected extreme values must 

come from different events. If you use classical methods 
where you select only the biggest value each year, there is 
only a little chance that two values come from the same event, 
but it is not impossible (one value on the 31st December year 
Y, an other value 1st January year Y+1). As we will see later, 
other methods do not ask for the restriction of one value per 
year, and it is therefore important to pay attention to this 
independence condition. It is customary to assign a minimum 
separation time to ensure the independence of extremes. For 
example, wind speeds must be separated by at least 2 to 3 days 
[4]. For meteorological parameters, it is useful to check that 
the time series between two selected extremes reveal this 
independence: for ice loads, two selected values should be 
separated with an absence of load. 

IV.  SHAPE OF THE TAIL OF PARENT LAW 
As mentioned previously, the determination of “parent 

law” is important to check for the “identically distributed” 
condition. It is also useful to get an idea of the shape of the 
tail of the distribution. This shape determines the kind of 
extreme of the variable of interest. It is customary to 
distinguish three types of tails : Type I correspond to 
unlimited extremes with exponentially decreasing probability 

density (for example Normal or Weibull distribution). Type II 
corresponds as well to unlimited extremes, but with a thicker 
tail, meaning a higher probability of occurrence of very big 
values of parameter X (for example Cauchy distribution). 
Type III corresponds to finite tails and bounded extremes (for 
example inverse Weibull or Log-Normal distribution). 
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Fig. 2.  Example of three types of tails of parent laws : Type I is Normal, Type 
II is Cauchy and Type III is inverse Gamma. 
 

As we are dealing with extremes, this notion is very 
important. The use of the traditional “Gumble laws” to assess 
extremes implies a Type I shape of tail. This assumption 
might have big consequences on the final value of design 
parameter XT. Fig 3 illustrates the variations of XT with T 
depending on the type of the shape of tail. 
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Fig. 3.  Variations of XT with T depending on the type of the shape of tail. 
 

Choosing one type of shape without checking it can lead to 
overestimate or underestimate XT depending on the case. We 
can see that type III, corresponding to parent laws with 
bounded extremes, will lead to limited variations and almost 
asymptotic values of XT for big T. On the contrary, type II, 
corresponding to unbounded and non-exponentially 
decreasing extremes, will lead to a very high sensitivity of XT 
against T. 

Reference [2] indicates that Type I distribution is usually 
preferred for extreme wind speeds, explaining that many 
studies revealed a parent Weibul distribution and “there is no 
natural upper bound to wind speed anywhere approaching the 
orders of magnitude at which wind speeds are naturally 
observed”. Type III was chosen in some cases, but Type II is 
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rarely found, generally revealing mixed wind series, the mode 
and the tail of parent distribution being given by different 
phenomena. 

Type I is also often chosen for extreme precipitations [4], 
[8], at least for maximum precipitations corresponding to 24 
hours or more. For shorter periods, Type II seems to lead to 
better adjustments [4]. 

For extreme temperatures, Type I and Type III are usually 
chosen, depending on the period selection (year, season) or 
minimal or maximal temperatures [4], [8], [9]. However, one 
can argue that these discussions are not relying on satisfactory 
statistical data, as the trend in the evolution of global mean 
temperatures during last century and specially since the 
1960’s seems now accepted [10]. Time series for temperatures 
are probably not identically distributed. 

What about accretions ? Among the parameters of interest 
in the design of overhead lines, ice thickness or ice loads are 
among the most complex, as they result of combinations of - 
at least – precipitations, temperatures and winds. As 
accretions are not permanent and even not frequent depending 
on the region (no accretion in one or several years), it might 
be difficult to get enough data to examine the parent 
distribution, not even talking of the shape of its tail. When the 
data is available, Type I is often chosen, based on 
exponentially decreasing type of parent distribution (for 
example [11]). But Type II has also been preferred, reference 
[6] explaining that “seems generally true of the extreme ice 
thickness data”. As for temperatures, the trend of accretion 
loads measured in Studnice in Czech Republic [12] might alert 
on the risk of non identically distributed data: this data shows 
a dramatic increase of ice accretion during the last decade of 
20th century. 

Il might anyway be sterile to argue the type of tails for each 
parameter in general: many things depend on the local 
conditions, for icing probably even more than for other 
parameters. The only way to cope with this is to examine data 
for each station, and test the shape of tail if possible. 

V.  TWO CLASS OF METHODS FOR ESTIMATION OF P(X) 
At this stage, we assume the two basic conditions 

previously described for application of Extreme Values 
Analysis are fulfilled : the initial data is composed of 
independent and identically distributed (thus stationary) 
values. 

The two class of classical methods for estimating the 
distribution of extremes depend on the extreme data sample 
selection. In the first one, the selected extremes are the 
maxima of yearly datasets, on which a Generalized Extreme 
Value (GEV) distribution is fitted. In the second one - known 
as Peak Over Threshold (POT) method - the selected extremes 
are all the values exceeding a threshold, on which a 
Generalized Pareto Distribution (GPD) is fitted. Fig. 4 
illustrates the selected data for these two class of methods. 
Because of the “identically distributed condition”, we cut the 
summer season of Fig. 1 and keep the winter season, from 
November to March. Another analysis should be made for the 

summer season. 
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Fig. 4.  Example of selection of extremes depending on the method – yearly 
maxima for GEV (circled) – values exceeding threshold for POT. 
 

GEV methods will use one extreme value per year (5 
extremes on Fig. 4). One could notice that for 1994-1995, 3 
points reach the maximum value (wind speeds are integer in 
m/s) but we select only one. The choice of “year” (calendar, 
seasonal, etc.) might have an influence on the selected data 
[5]. From Reference [6], “one could argue that it makes more 
sense to choose maximum ice thickness for the season rather 
than for the calendar year”. 

POT methods allow a selection of more values (12 values 
above 30 m/s on Fig. 4, on which 11 are assumed 
independent). The selected data depends on the threshold 
(choice of threshold will be discussed later) but it does not 
depend on a specific period: several values might be selected 
in a year, and none in another one.  

VI.  BASIC PRINCIPLE AND PLOTTING POSITIONS 
The basic principle of Extreme Values Analysis is to fit the 

2 or 3 parameters defining the cumulative distribution 
function P(x) to the selected set of data. At this stage, we have 
selected  and ordered N extreme values {x1≤ …≤xN}, N being 
the number of years for GEV, or N depending on the 
threshold for POT (usually NPOT>NGEV) 

To fit the parameters of P(x), one must estimate P*(xi), the 
value of P(x) for each xi. We will then get N couples of 
coordinates (xi, P*(xi)) on which we will try to adjust a 
supposed asymptotic function of P(x). The estimate of P(xi) is 
known as the “plotting position”. Influenced by the usual way 
of estimating cumulative density functions - not only their 
tails - the classical plotting position is often used: 

)1/()(* += NixP i   (2) 
However, Reference [23] explains that this estimate 

introduces bias when estimating quantiles of P(x), which is the 
case for Extreme Values Analysis. The following form of 
P*(xi) is often chosen, either for GEV and POT methods [15], 
[17], [18], with –0.5 < a < +0.5 

( ) )21/()(* aNaixP i −+−=   (3) 
As a simplification, the plotting position P*(xi)=(i-0.35)/N 

is often met in literature. 



IWAIS XI, Montréal, June 2005                                                                                                                                         

VII.  THE GENERALIZED EXTREME VALUE DISTRIBUTION 
(GEV) 

When the selected extremes xi are the maxima of yearly 
datasets, the cumulative distribution function P(x) to be fitted 
is the Generalized Extreme Value (GEV) distribution, given 
by [2]: 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −

−−=
k

xkxP
/1

1exp)(
α
β  k≠0 (4) 

([ αβ /)(expexp)( −−−= xxP )] k=0 (5) 
k, β and α are respectively the shape, the location and the 

scale parameter. The shape of the tail of the parent law will 
determine the value of the shape parameter k, thus the type of 
extreme distribution: k=0 for type I, k<0 for type II and k >0 
for type III. The aim of the Extreme Value Analysis is to 
estimate k, α and β, what completely defines the distribution. 
Once this is done, XT is given by : 
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A.  Graphical estimation of parameters α  and β  for Gumbel 
law (k=0) 

The large number of parent laws with an exponentially 
decreasing tail makes the type I or Gumbel law the most 
famous and most widely used extreme value distribution. 
Moreover, as you assume the shape parameter is zero, the 
estimation of the two parameters α and β only is required. 
Equation (7) can be written as well : 

( )( )[ ] βα +−−= )(lnln xPx  (8) 
Thus, a plot of x on the ordinate and –ln[-ln(P(x))] on the 

abscissa will give a straight line : the slope will give an 
estimate of α and the intercept will give an estimate of β. The 
procedure consists in positioning the points (P*(xi),xi), fit a 
straight line to these points (for example by using least-
squares method), then determine the slope α and the intercept 
β. 

Some authors [13] suggest that a power of the value x can 
be used instead of the value x itself. The reason for this is that 
the distribution of the annual extreme is a Gumbel law if the 
tail of the parent law is exponentially decreasing. If x is 
supposed to be exponentially decreasing, xq is even more ! So 
the convergence to a Gumbel law for xq is likely to be quicker 
than for x. Of course, the estimate parameters α and β are not 
the same for x and xq. If xq is used, XT is not given by 
equation (7) but by the qth root of the right hand side. 

B.  Estimation of parameters α, β and k in the general case 
(k≠0) 

As noticed earlier, the use of Gumbel graphical method 
presuppose k=0. Instead of doing this, we suggest applying 
the general case, and test afterwards the nullity of shape 
parameter k. In this general case when k is unknown, the 

estimation is however less simple, because three parameters 
must be found. There are several numerical methods for the 
estimation of these three parameters. The two most commonly 
used are Probability Weighted Moments (PWM) and 
Maximum Likelihood (ML) solutions. 
    1)  Probability Weighted Moments (PWM) 

The parameters α, β and k can be deduced from the three 
first statistical moments b0, b1 and b2 of the extreme value X. 
Unbiased estimates of these three moments for a set of N 
ordered extreme annual values {x1≤ x2≤…≤xN} are given by 
[15]: 
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Where P*(xi) is the plotting position (see part VI). From 
these moments, we calculate an intermediate variable c : 
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Estimates of parameters α, β and k are then given by : 
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Where Γ is the gamma function, tabulated in statistics 
books or provided by Microsoft Excel® functions.  
    2)  Maximum likelihood (ML) method 

This method is quite complex, as it is necessary to solve a 
set of three non linear equations of k, α and β. This requires 
an iterative procedure and a “first guess” of the three 
parameters for the beginning of iteration. Statisticians usually 
accept this complexity because this method is likely to provide 
the best estimates of the parameters α, β and k. We will not 
develop further this method. Details can be found for example 
in [16]. 
    3)  Test of nullity of parameter k 

As mentioned earlier, the correct “choice” of k is very 
important, as the value of XT is very sensitive to this 
parameter. We saw that the PWM and ML methods allows to 
estimate the three parameters while avoiding to make such a 
choice : the parameter k will not be chosen but calculated. In 
any case where the assumption k=0 is done, it might be useful 
to check it. Statistically, it means testing the hypothesis k=0 
versus the hypothesis k≠0. Reference [17] gives different 
tests, depending on the method chosen for the estimation of 
the three parameters. The simplest is the “median test” : If x* 
is the median of the set of N ordered extreme annual values 
{x1≤ x2≤…≤xN}, under the hypothesis that the xi obey the 
Gumbel distribution, the following value dmed is 
asymptotically Normally distributed with mean mmed and 
standard deviation σmed : 

( ) ( )[ ]1*/*ln xxxxd Nmed −−=  (14) 
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Therefore, at the 5% significance level, the hypothesis k=0 

can be rejected if the standardized value (dmed-mmed)/σmed lies 
outside the interval [-1.96, +1.96].  

When k is estimated using the PWM method, the estimate 
of k under a Gumble hypothesis is asymptotically distributed 
with zero mean and standard deviation NPWM /5633,0=σ . 
Therefore, at the 5% significance level, the hypothesis k=0 is 
rejected if the standardized value k/σPWM lies outside the 
interval [-1.96, +1.96].  

The brackets can be adjusted for other confidence levels, 
following standardized Normal fractiles. 

C.  Advantages and drawbacks of GEV 
The main advantage of the GEV methods presented above 

is their simplicity at the application stage. This is specially 
true for Gumble laws, allowing for a quite simple estimation 
of the parameters. Due to the selection of extremes, the 
“independence” condition is moreover easily reached. 

The main drawback of these methods is that only one value 
per period is selected, which means that you need long time 
series to get enough data for a reliable estimation of the 
parameters of law. A rule often used for Gumbel laws says 
that, with a data set issued from n years, you can estimate with 
a “reasonable” confidence interval a 2*n return period value 
(confidence intervals will be discussed later). Thus, for a 50 
years return period value, you need 25 years long time series. 
As you select one value in each period, the implicit hypothesis 
is that each period is subjected to identically distributed 
events. Obviously, it might not be the case for icing in places 
where no events occur during long periods. Reference [6] also 
points out that you select only one value in each period, even 
though several big events can occur in the same period. In a 
way, you ignore some information. 

VIII.  PEAK OVER THRESHOLD (POT) METHODS 

A.  Generalized Pareto Distribution (GPD) 
When the selected extremes xi are all the values exceeding 

a threshold, the cumulative distribution function P(x) to be 
fitted is the Generalized Pareto Distribution (GPD) given by : 
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Like the GEV distribution, the GPD has a shape parameter 
k and a scale parameter α. The shape parameter k is the same 
than for GEV distributions. The parameter S is the selected 
threshold. For k=0, the GPD is a simple exponential 
distribution : 
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If the threshold is selected high enough, the number of 

observations above the threshold per year is distributed 
following a Poisson law with rate λ. An estimate of λ is given 
by n/M, where M is the number of years of observation and n 
is the total number of values exceeding the threshold S. XT is 
then given by one of the following expression, depending on 
the value of k : 
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The estimation of α and k might use the PWM method 

described previously. As two parameters are unknown, only 
the two first moment b0 and b1 given by (9) are required. The 
parameters α and k are estimated by [6]: 

( )1001 2/)34( bbSbbk −+−=  (21) 

)1)(( 0 kSb +−=α  (22) 
For the classical case k=0, α=b0-S, which lead to a quite 

simple solution, either for the estimation of required 
parameters and for the calculation of XT. 

Other estimation methods are possible, including ML 
methods described for GEV distributions. Because these 
methods can reach their limit for particular values of k 
(outside the range [-0.5;+0.5]), Castillo and Hadi proposed the 
Elemental Percentile Method (EPM). This method consists in 
getting different values of k and α corresponding to several 
percentile values of x, then take the median of these k and α 
[18]. 

B.  Renewal method 
Instead of using a GPD, one can also fit the following and 

closed form of P(x) to the selected data above threshold : 
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Q(m/S) is the probability of observing m annual number of 
values above the threshold S. Q is classically a Poisson law. 

F(x/S) is the probability that the annual maximum is lower 
than x, knowing it is greater than S. The function F is typically 
modelled with an exponential law or a Weibull law. 

The aim is then to estimate the parameters of the chosen 
laws for the functions Q and F, while adjusting them to the 
data. The relevance of the chosen laws can be tested by using 
statistical tests (Kolmogorov-Smirnof). We will not fully 
develop this method, that can be a bit complex at the 
application stage : one must “play” with the threshold S so 
that you find a good fitness of both laws Q and F to the data 
above the threshold. If x is “big enough”, which must be the 
case for extremes, P(x) can be simplified : 

( )( )SxFxP bigx /11)( −−≈− λ  (24) 

Where λ is the “excess rate” defined previously for GPD. 
If F is modelled with a Weibull law, the final form will be : 

p
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The selection of threshold S defines the excess rate λ. The 
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parameters b and p can then be adjusted to the data above the 
threshold S, with a PWM or ML method. This late formula 
has been used to estimate the T-return-period values of floods 
[19]. This method was also eventually chosen to model 
extreme wind speeds in France following the storms of 1999. 

C.  Choice of Threshold 
The main difficulty with POT methods is the choice of the 

threshold [2] : “the threshold be set high enough so that only 
true peaks […] are selected. The threshold must be set low 
enough to ensure that enough data are selected for satisfactory 
determination of the distribution parameters”. The threshold  
depends on the data and might differ from a site to an other 
depending on their climatic exposure.  

Coles [22] describes two methods for the threshold 
selection. The first one consists in plotting the mean of the 
excesses (xi-S) as a function of the threshold S (“mean 
residual life plot”). For a GPD, this graph should be a straight 
line. An appropriate threshold can be chosen by selecting the 
lowest value above which the graph is a straight line, but this 
plot can however be difficult to interpret. The second 
procedure consist in estimating the parameters of the 
distribution for a range of thresholds, and look for stability of 
these parameters. The appropriate threshold is the value above 
which the estimates of k and (α-k) are assumed constant. 

More straightforward methods consist in choosing a 
threshold corresponding to a high percentile of the data (the 
x% biggest) or for a given value of excess rate λ [6]. 

IX.  PRECISION OF ESTIMATES 
The precision of estimates of XT is given by its standard 

error σ[XT]. The following expressions [2] give the standard 
errors for GEV and GPD and k=0.  
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These values are the theoretical minima (known as Cramer-
Rao bounds). Reference [20] studied different estimation 
methods of GEV distribution parameters and showed the 
sampling errors could overtake this bound of 30% for classical 
least-square Gumble plots, PWM and ML estimates giving 
more precise values. Assuming that the sampling error is 
normally distributed, the confidence interval of XT can be 
assessed by XT ± w*σ[XT], w depending on the required 
confidence level. Typical values of confidence limits are 
between one and two standard errors each side of XT.  

As the number N of selected values xi is bigger for POT 
methods, the sampling error is likely to be lower than for GEV 
methods, giving better precision on XT (depending however 
on the value of the excess rate λ). 

One should notice that this error is only the statistical 
sampling one. It assumes the data is precise (what can be 

discussed, specially for the extremes), and the method is 
correct (conditions respected, k actually null, …). 

X.  MIXED DISTRIBUTIONS 
As mentioned in the conditions for extreme values 

distributions, the data used must be homogeneous 
(“identically distributed” condition). One should not mix data 
coming from different phenomena with different parent laws. 
The procedure consists in isolating the data for each 
distribution/phenomena, and estimate the distributions of 
extremes separately. For example, if two phenomena (glaze 
and rime) are involved, the parameters of each distribution 
PGLAZE(x) and PRIME(x) are estimated separately. The final 
cumulative distribution function of X is then given by : 

[ ] [ )(1)(11
)(

11)( xPxP
xT

xP RIMEGLAZE −−−−=−= ] (28) 

This expression will eventually give the value of X 
corresponding to a given return period T, assuming the two 
phenomena. As PGLAZE and PRIME are different distributions, 
there is not straightforward expression of the final XT in the 
general case.  

It may however not be necessary to separate the data if the 
extremes are obviously dominated by a single mechanism. 
Separation will moreover lower the number of data available 
for the estimation of the parameters of each distribution. 

XI.  WHEN CONDITIONS ARE NOT MET 
At the beginning of this paper, we insisted on the statistical 

conditions required so that Extreme Value Analysis can be 
performed : independence and identical distribution.  

Meeting the independence condition is a matter of selection 
of data. This might lead to lower the number of available 
points to fit the parameters of the extreme value distribution. 
If this number of points is low, the notion of “superstation” 
might be useful to extent it [2], [6]. The idea is to consider all 
the data measured in several stations, belonging to a region 
consistent from the meteorological phenomena of interest. The 
value of XT estimated with this grouped data shall then be 
representative for the region. The selection of data must be 
made with care, as the independence of data is still a 
condition, and as one must be sure of the homogeneity of the 
climatic conditions in the region. 

Problems are more critical if the “identically condition” is 
not respected. As addressed in another paper of this 
conference, accretion conditions in France are mainly due to 
wet snow events, likely to happen once every several years, 
sometimes with high severity. In that case, we do not have the 
data required to check for this condition, and each single data 
is an extreme value by itself. This lack of data leads us to fit 
distributions to the ice loads modelled from conditions, and 
not only from observed values. 

The most complex situation probably concerns data 
revealing a trend. Usual statistical methods do not allow to 
take such a trend into account, although a linear dependence 
of the estimated parameters of extreme distribution with time 
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can be considered, which means that XT is supposed to evolve 
with time. Addressing such potential trends leads to 
fundamental questions, beyond statistical tools: How can we 
detect trends in extremes and not only in mean values? What 
is this trend supposed to be in the future ? etc. 

XII.  CONCLUSION 
The key word in Extreme values Analysis is data. The final 

choice of a method will highly depend on the amount of 
available values of the climatic / design parameter of interest. 
One must remind that the GEV or POT distributions presented 
in this paper are asymptotic functions, likely to be reached for 
big number of samples of independent and identically 
distributed values. They will eventually converge to the same 
values of XT.  

When such large datasets are available, GEV methods have 
the important advantage of simplicity at the application stage. 
However, as they require one extreme value per year, they are 
probably limited to frequently exposed areas.  

POT methods give an interesting alternative for lower 
series of data, as they allow for the selection of several values 
each year. Moreover, they seem better adapted to irregularly 
exposed areas. From these two aspects, POT methods are very 
interesting for ice loads data, specially in regions where 
accretions might happen from time to time, but sometimes 
severely. They are however requiring more decisions, 
specially in the selection of the threshold. 

Whatever the method, the analysis of the distribution of the 
parent laws should not be spared, and specially checking for 
the “independence and identically distributed” conditions of 
the selected data. In particular, this analysis may lead to the 
detection of different phenomena at the origin of the value of 
interest, requiring a separation of data to avoid mixed 
distribution. It may also reveal a non stationary data, for 
which these classical Extreme Value Analysis methods are not 
valid.  

In that case, the application of these methods will give a 
conventional but still necessary design value. 

XIII.  APPENDIX - TEST OF KOLMOGOROV-SMIRNOV 
Let Fn1(x) and Gn2(x) be the empirical cumulative 

distribution function of two samples of respective sizes n1 and 
n2. The statistic D is the maximum value of the difference 
between Fn1(x) and Gn2(x). The test consists in rejecting the 
hypothesis that the two data sets are issued from the same 
distribution if the distance D is “too big”. The acceptance 
depends on the required significance level. For a sufficiently 
large datasets (n1,n2 > 80) the hypothesis is rejected if : 

2121 /358.1 nnnnD +>  for a risk level of 5% 

2121 /628.1 nnnnD +>  for a risk level of 1% 
For other risk levels or smaller datasets, please consult 

statistic tables [1]. This test can be used as well to check for 
the adjustment of an empirical cumulative distribution 
function Fn(x) to a theoretical one, by replacing D by the 

maximum value of the difference between the empirical and 
the theoretical cumulative distribution functions, and by 
replacing the value 2121 / nnnn +  by n. 
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