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Abstract - In this paper, a FEM approach is proposed to 
evaluate the heat transfer and temperature gradient of a 
bare and an iced cable under icing conditions. It is a 
preliminary study for a project that is intended to 
calculate the conjugate heat transfer for an icing cable. 
The cable under consideration is current-carrying. The 
Finite Element Method (FEM) was used to solve the 
hybrid ice-aluminium domains that may be governed by 
the Poisson Partial Differential Equations (PDE). The 
boundary conditions for the dry- and wet-ice 
accumulations were prepared differently, i.e. the 
Neumann condition for the former, and the mixed 
Dirichlet-Neumann condition for the latter. In application, 
four sets of local heat transfer coefficients, respectively for 
low, medium and high levels of roughness from 
Achenbach’s studies, and for a cable surface made of 
torsional strands, were taken as an input for the model 
boundary conditions so as to determine the optimum 
formula for cable icing. Also, the effects of wind speed and 
ambient temperature on the temperature of the cable were 
closely examined, which led to a number of conclusions. 
The validity and reliability of the method were confirmed 
partially by comparing the simulation results with those 
obtained from the experimental tests. 
  

I. INTRODUCTION 
In earlier days of icing researches (Lozowski et al. 1983, 

Makkonen 1984), the thermal exchange between the ice 
accretion surface and its substrate was ignored, and thus an 
adiabatic condition was assumed. Schilder (1987) made the 
first attempt to address this lack and proposed a calculation 
procedure to account for the internal heat conduction. For 
implementation, the cylinder and ice deposit were discretized 
into a number of isothermal elements that can be governed by 
the thermal diffusion equation. The finite-difference method 
was then used to solve the PDE system. However, this paper 
work stopped short of incorporating Joule heating although it 
may have been done easily with the same approach. At the 
same time, the question domain was discretized into a number 
of radial sections, a manner that suits well for a radial ice 
growth but which may impose restrictions for model 
application to an arbitrary ice shape. Jones (1996) took the 

Joule heating into consideration by introducing the resistive 
heat flux directly in the heat-balance equations. This heat flux 
was assumed to dissipate evenly over the icing surface. It 
should be noted that, for a totally ice-covered cylinder, the 
method may be applied without risk of substantial error, 
whereas for a partially ice-covered cylinder, this method may 
cause a higher degree of inaccuracy, since the resistive heat 
flux under such a condition tends to show a great irregularity 
on the surface of the icing cylinder. Bouamoul (2002) 
proposed to use the FEM to calculate the temperature gradient 
of an ice-shedding cable. Again, as Joule heating was assumed 
to be negligible, it was possible to isolate and consider solely 
the ice accretion domain during modelling. It should be 
noticed that the current passing through the cable may be as 
high as 1000 Amps, which may cause the cable temperature to 
increase by 10~20 degrees with regard to the ambient 
temperature. As a result, the Joule heating can not be ignored 
in nowadays’ modelling work.  However, the inclusion of the 
internal heat transfer may complicate to a further degree the 
already complex modelling work (Fu, 2006). The reason is 
that modelling the conjugate heat transfer problem requires a 
coupling of the calculation procedures for the thermal process 
at the icing surface and the thermal process within the icing 
cable. The scope of the present work was limited to modelling 
the thermal process within an iced cable, for which the FEM is 
used to solve the Poisson domain composed of the cable and 
ice deposit. The FEM is believed to be an appropriate method 
here because the law of conservation of energy holds for any 
meshing element. A triangular mesh was created for the 
domain of interest because it ensures an excellent fit to any 
complex geometry. The number of triangular elements is 
determined as the result of a compromise between calculation 
efficiency and accuracy.  
 

II. BASIC PRINCIPLES 
Figure 1 shows an energized cable that is covered 

asymmetrically by an ice deposit. The wind speed is u0. 
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Fig. 1 An energized cable partially covered by ice deposit 

 
In total, there are two calculation zones, one for the ice 

deposit and the other one for the energized cable. Both zones 
can be governed by the Partial Differential Equation of the 
same form, as follows: 

QTk &=∇⋅∇− )(          (1) 
or 

0)( =−∇⋅∇− QTk &         (2) 

For the ice domain, Ω 1, k is the thermal conductivity of ice 
and Q is zero because no heat is produced.   &

For the cable domain, Ω 2, k and Q  are the thermal 
conductivity of aluminium and heat source, respectively. 

&

 
Multiplying an arbitrary test function V and integrating on 

 yields: Ω
0))(( =−∇⋅−∇∫Ω σVdQTk &       (3) 

 
Integrating by part yields 

∫∫∫ ΩΓΩ
=⋅∇⋅−∇⋅∇ σσ VdQVdsTknVdTk &)()(  

 (4) 
 
Assume that 1φ … iφ … nφ  form the basis for the solution 

space, V.  

∫∫∫ ΩΓΩ
=⋅∇⋅−∇⋅∇ σφφσφ dQdsTkndTk iii

&)()(  

 (5) 
 

where )( Tkn ∇⋅  can be evaluated using the Neumann 
boundary condition:  

qTgTkn −=∇⋅ )(         (6) 
 
If the radiation cooling and solar heating are ignored, the 

present problem involves the convective heat transfer only, i.e. 
q = Cf and g = Cf×Ts. 
 

(7) ∫∫∫∫ ΓΩΓΩ
+=+∇⋅∇ dsgdQdsqTdTk iiii φσφφσφ &)(

 

Expanding T in the same basis of V, that is ∑= jjtxT φ)( , 

yields 

∫∫∑ ∫∫ ΓΩΓΩ
+=+∇⋅∇ dsgdQtdsqdk iijijij φσφφφσφφ &))((

 (8) 
 
So for each triangular element, a linear shape function is 

derived, which can be used to evaluate the integral terms in 
the above equation while entailing no significant difficulties in 
numerical calculations. Then the element-based equations 
over the ice deposit and energized cable are assembled into a 
single set of system matrixes. By applying the boundary 
conditions and solving the equation system, it is possible to 
obtain the heat flux and temperature distributions anywhere in 
the domains.   
 
Boundary conditions: 
On the boundary, 1Γ , the Neumann condition is used, as 

follows 

)()( sac TThTkn −=∇⋅        (9) 
 
On the boundary, 2Γ , the boundary condition can be a 

Neumann or Dirichlet condition, depending on either a dry-
icing or wet-icing condition involved. For the wet-icing 
conditions, the Dirichlet condition is applied:   

0=sT          (10) 
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Fig. 2 Triangular mesh for Poisson domain 

 
The heat generation due to the resistive or Joule heating may 

be expressed, in formulation, as follows:  
))2/(/( 22

ccr DRIQ π=                           (11) 
 
where the rated current, I, may be calculated according to the 

following formula:  
I = (Economical Current Density) × (Conductor Cross-

sectional Area) (12) 
The conductor resistance, , is a function of conductor 

temperature, and by referring to certain technical manuals, it is 
possible to obtain the resistances at both high and low 
temperatures,  and , respectively. Consequently, the 

resistance at any particular temperature, , may be obtained 
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by using linear interpolation according to the following 
equation: 
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    Suppose the cylinders under consideration are all 34.9 mm 
in diameter. The rated current for cables of this size is I =860 
amp, and the electric resistance is Rc= 0.0625 ohms/mile.  
 

III. SIMULATIONS AND RESULTS 
As the first application of the calculation approach, a bare 

cylinder is considered and the Neumann boundary condition is 
applied. Since the cylinder has a smooth surface, the heat-
transfer results from Achenbach’s studies can be adopted. In 
total, three sets of local heat transfer coefficients were used, 
respectively for the low, medium and high levels of roughness. 
Figure 3 shows the heat transfer coefficients at an arbitrary 
angular position, obtained at ks/d=75×10-5, ks/d=300×10-5 

and ks/d=900×10-5 for Re < 105.  
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Fig. 3 Local Nusselt number regarding to its angular position 

 
Figure 4 shows the temperature gradient for the above 

mentioned heat transfer coefficients. As far as the average 
temperature is concerned, the low-roughness case gives the 
highest temperature while the high-roughness case, the lowest 
temperature. Also, the cold zone is located on the windward 
side for the high-roughness case but is on the leeward side for 
the low-roughness case. This is due to the fact that high 
roughness promotes and engenders a turbulent boundary layer 
that leads to a higher average heat transfer rate, and that the 
maximum transfer rate appears at the windward direction. In 
such a case, heat is removed rapidly by convection, thus 
generating a large temperature drop. It should also been noted 
that the variations in temperature for these three cases are 
minor in magnitude because of the large thermal conductivity 
of the cylinder, that is, 220 W/m.K for aluminum.  

 

 
(a) 

 
(b) 

 
(c) 

Fig. 4 Temperature distributions.  
Roughness: (a) 75×10-5 (b) 300×10-5 (c) 900×10-5

Conditions: Air speed 5 m/s; Air temp. -10°C; Diameter 31.6 mm; Current 
700 Amps 

 
In order to validate the above mentioned calculation 

procedure, a series of experiments were carried out in the 
CIGELE Atmospheric Icing Research Wind Tunnel 
(CAIRWT). Figure 5 shows the current transformer, 
connections and experimental setup, which were used to 
generate the electrical current and measure temperature data.  
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Fig. 5 Experimental set-up (a) Connections (b) test piece (cable) 
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Fig. 6 Cable temperature versus wind speeds 

Conditions: Air speed 5 m/s; Air temp. -10°C; Diameter 31.6 mm; Current 
700 Amps 

Figure 6 shows the curves generated from the calculated 
results and measured data, respectively. It is evident that the 
calculated results using Achenbach’s data display a great 
discrepancy with the data obtained from experimental 
observations since a marked difference in average temperature 
can be observed in the figure. A further study reveals that the 
heat transfer coefficient from Achenbach (1977) could not be 
used for the cable made of torsional strands. That cable’s 
unique structure dictates that its thermal conductivity and 
surface transfer rate differ greatly from those of an aluminum 
cylinder. Figure 7 shows the local Nusselt number obtained 
from numerical calculations (Péter 2006). By using the new 
Nusselt number, however, it is possible to obtain data that 
shows a striking agreement with the test data, as shown also in 
Figure 6. It was claimed in the same study that the thermal 
conductivity ranges from 3 to 12 W/mK, depending on the 
contact angle of the strands and the air gap inside. 

Consequently, the differences in temperature over a cable cut 
can reach 1 degree, as proved experimentally in our test.  
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Fig. 7 Local Nusselt number regarding to its angular position for a cable 

   

  

 
Fig. 8 Temperature Distributions  (31.6 mm Cable , 700 Amps. 

Thermal conductivity (a) 5 W/m.K  (b) 12 W/m.K 
Conditions: Air speed 5 m/s; Air temp. -10°C; Diameter 31.6 mm; Current 

700 Amps 
 
As mentioned earlier, the proposed FEM procedure can be 

used to calculate the heat transfer in multiple domains, that is, 
ice-cable domains. Figure 9 (a) shows the temperature profile 
for a dry ice accumulation whereas Fig. (b), for wet ice 
accumulation. As a result, the Neumann boundary conditions 
were applied in the former case. The lowest temperature 
appears at the stagnation point and the maximum temperature 
difference in the domain is up to 2ºC. In the wet accumulation 
case, hybrid boundary conditions were applied accordingly; 
that is to say, the Dirichlet conditions were applied for the ice 
accretion surface while the Neumann conditions, elsewhere. It 
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is possible to observe that the lowest temperature appears on 
the leeward side and that the highest temperature appears in 
the middle of the cable. According to these two figures, it is 
possible to conclude that the temperature profiles for the dry- 
and wet- ice accumulations can be totally different.   

   

 
Fig. 9 Temperature Distributions 

(a) Temperature distribution for dry-ice accumulations 
(b) Temperature distribution for wet-ice accumulations 

Conditions: Air speed 5 m/s; Air temp. -10°C; Diameter 35 mm; Current 860 
Amps 

It would also be interesting to know how the ambient 
temperature affects the cable temperature. Figure 10 shows 
that given the wind speed and current intensity, cable average 
temperature grows linearly with regard to ambient temperature. 
But the same conclusion can not be extended to the 
relationship between wind speed and cable temperature.  
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Fig. 10 Cable temperature versus ambient temperature 
Conditions: Diameter 31.8 mm; Current 700 Amps 

 
The relationship of cable temperature vs. wind speed can be 

better displayed in Fig. 11, wherein three curves can be 
observed that represent the results for 0ºC, -5ºC and -10ºC, 

respectively. In general, this relationship can be represented 
by a polynomial curve. Cable temperature decreases rapidly 
with an increase in wind speed at the low-speed section, 
whereas the temperature decreases markedly at the high-speed 
section. This can be explained by the convective heat transfer 
occurring on the cable surface. The heat transfer rate is 
proportional to the square root of the Reynolds number and 
the Reynolds number varies linearly with regard to wind 
speed. Therefore, heat transfer rate is proportional to the 
square root of wind speed, which means that heat transfer 
increases rapidly at the low-speed section while the growth 
rate slows down at the high-speed section.   

-10

-5

0

5

10

15

20

0 2 4 6 8

Wind Speeds (m/s)
C

ab
le

 A
ve

. T
em

pe
ra

tu
re

 (º
C

10

) -10 ºC
-5 ºC
0 ºC

Fig. 11 Cable temperature versus wind speeds 
Conditions: Diameter 31.8 mm; Current 700 Amps 

 
IV. CONCLUSIONS 

The FEM was successfully applied to evaluate the heat 
transfer and temperature gradient of a bare and an iced cable 
under icing conditions. Through this study, it was found that 
such key parameters as the convective heat transfer coefficient 
and thermal conductivity should be estimated specifically for 
the type of cable under consideration. Otherwise, a substantial 
error may result. Therefore, it is recommended in future 
studies to take into consideration the heat flux due to 
evaporation and phase change. As such, the calculation 
procedure described herein may possibly be incorporated into 
an icing model.  
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