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Abstract— In this paper, two model based on neural 
networks are proposed for predicting accreted ice type 
using temperature, wind speed and droplet size as 
parameters. The data sets for training the models were 
created using functions determined from experimental 
ones recommended in pertinent literature for 
distinguishing between different ice types. These functions 
were used as discriminate functions in the models, their 
combination being used to create the target variable 
corresponding to the ice types in the training data set. The 
neural network architecture known as Multi Layer 
Perceptron was used with two input nodes representing 
temperature and wind speed in the first model and three 
input nodes representing temperature, wind speed, and 
droplet size in the second model. The models contain two 
output neurons encoding four binary coded ice types, 
namely wet snow, hard rime, soft rime, and glaze. The 
number of hidden layer neurons during the experiments 
was varied to determine the optimum model.  
Performances of the models were measured by two criteria 
including: mean square error and learning rate 
percentage. The optimum models led to a learning rate of 
more than 99% with both the training and test data sets. 
The obtained results are promising and show that neural 
network models can be a good alternative for predicting 
the type of ice accretion provided that the functions used 
for creating training data sets are accurate enough.  

I.  NOMENCLATURE 
Neural networks, accreted ice type, atmospheric icing  

II.  INTRODUCTION 
HE term ice accretion is employed to describe the process 
of ice growth on a surface exposed to atmospheric icing. 

The ice growth rate on a surface depends on the impact rate of 
the ice particles, airflow characteristics, and local thermal 
conditions of the surface [1]. In general, it is recognized that 
there are four types of ice accretion: hard rime, soft rime, 
glaze, and wet snow. Usually, the type of accreted ice is 
determined by assessing the physical properties of the ice 
including its density, adhesion, color, shape, and cohesion. 
These physical properties of atmospheric ice may vary within 
rather wide limits. There are also some meteorological 
parameters affecting ice accretion which can be used to 

determine the accreted ice type without having to evaluate its 
physical properties. Those parameters include: air temperature, 
mean wind speed, droplet size and liquid water content. The 
idea of developing a neural network model for predicting 
accreted ice type was inspired from a figure on experimental 
functions recommended by IEC (International Electrical 
Commission) [2] for switching between soft rime, hard rime, 
and glaze for in-cloud icing.  

III.  NEURAL NETWORKS  
 

Neural networks, also known as Artificial Neural Networks 
(ANN), are computational models that consist of a number of 
simple processing elements that communicate by sending 
signals to each other over a large number of weighted 
connections. The ANNs represent an attempt on a very basic 
level to reproduce the type of nonlinear training which occurs 
in the neural networks that we find in the nature. In fact, the 
relationship between ANNs and brain functioning lies in the 
idea of performing computations by using parallel interaction 
of a very large number of non linear processing elements [4]. 
The neuron, i.e. the processing element, is the building block 
of neural networks. Each neuron is composed of a set of 
inputs, a body where the processing takes place and an output.  
It receives inputs from other neurons in the network, or from 
the outside world, and calculates an output based on these 
inputs. Each connection (also called a synapse) between the 
neurons is given a weight which represents the relative 
importance of a specific input. A neural network “learns” by 
adjusting its weight sets. Fig. 1depicts a neuron with n inputs.  

 
 

 
Fig. 1: A single neuron 

 
The input signals Xi are transferred into the neuron after 

T
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being multiplied by synaptic weights Wi.  The neuron then 
computes the sum of the weighted input signals, called net 
input, and then passes this value through an activation 
(transfer) function to produce an output value. The neuron 
also includes an externally applied bias b. This bias has the 
effect of increasing or lowering the net input of the activation 
function, depending on whether it is positive or negative, 
respectively [3]. In mathematical terms, the following 
equations give a concise description of the neuron:  

bWXN
n

i
ii += ∑

=1           (1) 

and  

)( Nfy =             (2) 

 
where X1,X2,…,Xn  are the input signals; W1,W2,…Wn  are 
the synaptic weights of neuron; b is the bias term; N is the net 
input and  f(.) is the activation function.  

 
The combination of two or more of these neurons builds a 

layer and these layers then connect to one another to construct 
a neural network. The neurons are connected to other neurons 
by receiving input from and /or providing output to the other 
units. The neurons which only have output connections are 
considered “input” neurons, while those which have only 
input connections are called “output” neurons. In addition, a 
neural network may have one or more “hidden” neurons 
which neither receive input nor produce output for the 
network, but rather assist the network in learning to solve a 
given problem. The connectivity of neurons within a neural 
network is very critical in its ability of processing data. Based 
on the connectivity pattern between the layers of a neural 
network, there are different architectures. More information 
on neural networks field, can be found in the book by Hakin 
[3]. 

IV.  A TWO-INPUT NEURAL NETWORK MODEL TO DETERMINE 
ICE TYPE 

There are some typical steps in developing a neural 
network model including analysis of the problem and 
collection of the related data, choice of the neural network 
type which is able to solve the problem,  and training the 
neural network and monitoring its performance on test data. 
The details of these steps have been elaborated in the 
following sections.  

A.  Data Collection  
The first step in developing any neural network model is 

collecting the data related to the problem. The first thing to do 
when planning data collection is to decide what data we will 
need to solve the problem and from where the data will be 
obtained. In the context of our problem, we need a data base 
which attributes the proper ice type to input patterns which are 
meteorological parameters. Since in the available icing data 

bases, there is no information related to ice type, the pertinent 
literature was used as a source for creating the needed training 
data base. Fig. 2 which is recommended in IEC [2], was our 
main source for creating the needed training data. 

 

Fig. 2: Accreted in-cloud ice type as a function of wind and temperature[2] 
 
The strategy for obtaining the needed data base was to 

estimate the equations plotted on the above figure and use 
them as discriminate functions. It is important to notice that 
the functions represented in that figure have been accepted as 
international standards by experts in atmospheric icing for 
determining ice type. So using polynomial curve fitting, these 
equations were obtained and were used as discriminate 
functions. The discriminate function of the first curve, 
distinguishing glaze ice from hard rime, is represented by (3):   

 
    (3) 0085.1746.0045.0001.0),( 23

1 =−+−+= TTTWTWG

whereas the discriminate function of the second curve, 
separating hard rime and soft rime, is given by (4).   

0134.3495.1269.0007.0),( 23
2 =−+−+= TTTWTWG   (4) 

where W is wind speed in m/s and T is temperature in oC. 
 
A discriminate function is used for dividing a set of data 

points into two different classes [5]. Each data point is 
substituted in the discriminate function and if the result is 
greater than zero the data point is in the right hand of the 
discriminate or boundary function and if it is less than zero it 
is in the left hand of it. In summary, each discriminate 
function divides a given data set into two sections depending 
on the sign of it. So, using these two discriminate functions, 
three ice types, glaze, hard rime and soft rime can be classified. 
The third discriminate function G3 was obtained from 
information found in the same reference, as to if temperature 
is greater than zero, regardless of wind speed, the accreted ice 
type is wet snow.  

 
In order to create the needed data base, values of 

temperature and wind speed typical of icing events were 
considered as input points. These include the range of -25 to 5 
for temperature and a range of 0 to 30 for wind velocity. Then, 
by using the combination of discriminate functions shown in 
Listing 1 , for each input pair its corresponding ice type was 
determined and saved as target variable in the data set. Each 
type of ice was given a specific binary code.  Fig. 3 shows the 
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distribution of the created data points.  
.  

 
If G3>0 

ice_type= wet snow coded by [0 0] 

else if G1>0 

ice_type=glaze coded by [0 1] 

else if G1<0 & G2>0 

ice_type=hard rime coded by [1 0] 

else 

ice_type=soft rime coded by [1 1] 
 
Listing 1: Pseudo-code for combination of discriminate functions for 
determining ice type based on temperature and wind speed 
 
 

Fig. 3: Distribution of the points in the created data set for the two-input 
neural network 

B.  Experimented Neural Network Architecture  
The learning task to be dealt with here is a pattern 

classification problem, which Multi Layer Perceptron 
architecture (MLP) is the best candidate for solving. The 
complexity level of the problem is such that only one-hidden 
layer MLP is sufficient for efficiently reaching a solution. The 
number of input and output neurons is defined by the problem. 
Fig. 4 shows the schematic of the chosen architecture.  

 
Fig. 4: Schematic of the architecture of the two-input neural network model 
for determining accreted ice type 
 
In the input layer there are two neurons: one for temperature 

and the other one for wind speed. The output layer contains 
two neurons for representing the binary value of the four 
possible ice types. The number of neurons in the hidden layer 
is indicated by j which implies that during the experiments 
there was variable number of neurons in the hidden layer. We 
began with four neurons in the hidden layer, and with each 
successive test the number of neurons was increased in order 
to raise the learning rate of the network. Because of the range 
of the output, logistic functions were selected as transfer 
functions for both the hidden and output layers. To perform 
the training, the Levenberg-Marquardt algorithm, one of the 
fast algorithms of backpropagation training [3], was used.  

C.  Performance criteria  
 
Two criteria have been considered to measure the 

performance of the model. The first one is the classic mean 
square error (MSE), which computes the average squared 
error between the network outputs and the observed outputs. 
The most efficient model has the least MSE. In mathematical 
terms, MSE is defined as:  

N
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=
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=                                             (5)   

where  is the actual output ,  is the output of the network, 
and N is the number of the training patterns.  

iY iŶ

 
The other performance criterion which is the most 

important criterion for pattern classification problems is the 
learning rate percentage for each type of ice. Learning rate 
percentage is defined as the the number of the correctly 
classified input patterns for a specific ice type divided by the 
total number of the patterns for that specific ice type, 
multiplied by 100.  

 

100*
patternsofnumberTotal

patternsclassifiedcorrectlyofNumberPercentageRateLearning =
   (6) 

D.  Results of experiments  
 

Fig. 5 shows the results of experiments based on MSE with 
varying the hidden layer’s neurons. The number of epochs for 
the tests was set to 10,000. Six different structures were tested. 
 In order to avoid the networks to be trapped in a local 
minimum, twenty different tests with a new initiation of 
weight and bias matrices were carried out for each structure. 
From Fig. 5, it can be concluded that augmenting the number 
of neurons up to ten in the hidden layer decreases the MSE 
value, thus improving the efficiency of the network. However, 
the behavior of the network stays almost the same and the 
error becomes almost zero, after a number of neurons larger 
than 10.  
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Fig. 5: Results of experiments for the two-input neural model as a function of 
MSE versus number of neurons in hidden layer (epochs=10000)  

 
In order to quantify the results of classification for each 

type of ice, the performance of each structure was tested by 
running the training data and calculating the resulting learning 
rate percentage. The results are shown in the Table 1. It is 
important to mention that in the simulation stage, the output of 
the network was rounded to the nearest integer. This is why 
some learning rate percentages reach 100% in spite of the 
existence of small errors in Fig. 5.  

 
Table 1: Results of experiments for the two-input neural model based on 
learning rate percentage versus number of neurons in hidden layer 
 

LEARNING RATE (%) NEURONS 
IN 

HIDDEN 
LAYER 

 Wet snow Glaze  Hard rime  Soft rime 

4 94.21 79.51 83.12 95.11 
6 98.14 91.36 94.97 98.46 
8 99.08 100 98.31 99.05 

10 100 100 100 100 
12 100 100 100 100 
14 100 100 100 100 

 
Based on the obtained results, the number of neurons in the 

hidden layer was set at 10.  

E.  Validation of the proposed model  
In order to validate a neural network model, it is applied to 

a test data set that has not been used during training process.  
For that purpose, the model was applied to icing data from the 
Mont Bélair icing site, 25 km northwest of Quebec City.  
Hourly data records were obtained from measurements during 
57 consecutive icing events (1739 hours) during the 1998-
2000 winters. First, ice type for the Mont Bélair data set was 
determined using the functions proposed by IEC [2] as the 
reference for comparison purposes. Then, using the proposed 
neural network model the ice type of this icing data set was 
determined.  The results of model performance for this data 
set are summarized in Table 2. It is obvious that for the 
majority of the data points, ice type have been correctly 
determined by the model. It can be concluded that this model 
is able to perform an ice type determination on new test data 
with the same accuracy as with the training data set.   

   

Table 2: Learning rate of proposed model for each class of ice type for Mont 
Bélair data set 

 
LEARNING RATE (%) 

 Wet snow Glaze  Hard rime  Soft rime 

99.95 99.59 100 99.58 

 

The results of model performance for the Mont Bélair data 
set are visually depicted in Fig. 6.  

 

 
Fig. 6: Visualized results of proposed model’s performance on test data   

V.  A THREE-INPUT NEURAL NETWORK MODEL TO DETERMINE 
ICE TYPE 

In spite of the very good results obtained with the 
developed model, temperature and wind speed parameters are 
not sufficient for the determination of a certain ice type. This 
is why a second model was developed by incorporating an 
additional parameter, droplet size.  

A.  Data Collection  
 

Figures 7 and 8, taken from [5] were our main sources for 
creating the needed data set for the second model.  

 

 
Fig. 7: Accreted ice type as a function of wind speed and temperature [5] 
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Fig. 8: Accreted ice type as a function of droplet diameter and temperature [5] 
 

Similarly with the development of the two-input model, the 
equations were estimated from these figures, which was the 
first step in creating the training data set. Using curve fitting 
section of Maple software, the following equations were 
obtained for each of the curves of Fig. 7. The discriminate 
function of the first curve separating glaze ice from hard rime 
is represented by (7) whereas the discriminate function of the 
second curve separating hard rime and soft rime is expressed 
by (8).   

0085.1746.0045.0001.0),( 23
1 =−+−+= TTTWTWy   (7)   

0134.3495.1269.0007.0),( 23
2 =−+−+= TTTWTWy  (8) 

where W is wind speed in m/s and T is temperature in oC.  
 
From Fig. 8, the simplified equations for three regions were 

obtained with considering all these regions as ellipses. So, the 
discriminate functions of the regions related to glaze, hard 
rime and soft rime, are respectively represented by equations 
(9), (10) and (11). 
 

0621.42193.7155.0616.1),( 22
3 =+−+= DDTDTy  (9)  

0486.105788.4097.25135.0849.1),( 22
4 =+−++= DTDTDTy  (10)  

0319.232261.4562.38145.0724.1),( 22
5 =+−++= DTDTDTy  (11)  

 
The combination of these discriminate functions as shown 

in Listing 2 was used for creating the target variable 
corresponding to the ice types in the training data set. As it 
can be seen from this pseudo-code, only three ice types can be 
determined by the combination of these discriminate functions. 
This is because it proved impossible to find any information 
regarding wet snow as a function of temperature, wind speed, 
and droplet size. Glaze, hard rime, and soft rime are referred 
to as in-cloud icing in the literature. So, this second model 
will be used only for predicting in-cloud icing types. Fig. 9 
shows the 3D distribution of the created data points. Also, in 
order to have a better idea of the created data points, Fig. 10 
and Fig. 11 show the projection of these points in 2 dimensions.   

 
If y2>0 & y3<0 & y4>0 

ice_type= glaze coded by [0 0] 

elseif y1>0 & y2<0 & y4<0 & y3>0 & y5>0 

ice_type=hard rime coded by [0 1] 

elseif y1<0 & y5<0 & y4>0 

ice_type=soft rime coded by [1 0] 

else ice type= undecided coded by [1 1] 
 
Listing 2: Pseudo-code for combination of discriminate functions for 
determining ice type based on temperature, wind speed and droplet size 
 

The white areas in these figures are the regions for which 
an ice type cannot be determined by the discriminate functions. 
As it can be observed, the uncertainty region (white area) is 
much larger than the regions for which an ice type was 
attributed. However, the available sources in the literature 
provide only that much information.  

Fig. 9: Distribution of the points in created data set for three-input neural 
network 

 

 
Fig. 10: The view of created data points for three-input neural network in 

2-dimensions (temperature and wind speed) 
 

 
Fig. 11: The view of created data points for three-input neural network in 

2-dimensions (temperature and droplet diameter) 
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B.  Experimented Neural Network Architecture  
As was the case for previous model, a one-hidden-layer 

MLP with a varying number of neurons in the hidden layer 
was the experimented architecture. However, there are three 
input parameters including temperature, wind speed and 
droplet size, and the number of inputs neurons is three. In the 
output layer there are again two neurons with binary value, 
their combination representing three ice types including soft 
rime, hard rime, and glaze. The binary coding of [1 1] means 
that the neural network is not capable of determining the ice 
type. The number of hidden layer neurons was varied in order 
to find the optimum structure for the model. Other 
characteristics of the network including transfer function and 
the learning algorithm were set as with the two-input model. 
Fig. 12 shows the schematic of the chosen architecture for the 
second model.  

 
Fig. 12: Schematic of the experimented architecture for the three-input neural 
network model for determining accreted ice type 

C.  Results of experiments based on MSE and learning rate 
percentage  

Fig. 13 shows the results of experiments based on MSE for 
the three-input model. The conditions during the tests were 
exactly the same as for the previous model. From Fig. 13, it 
can be concluded that the behavior of the network stays 
almost the same after a number of neurons larger than 14.  

 
Fig. 13 Results of experiments for three-input neural network as a function of 
MSE versus number of neurons in hidden layer (epochs=10,000) 
 

The quantified results of classification for each type of ice 
are shown in Table 3 . They were obtained by testing the 
performance of each structure by running it with training data 
and calculating the resulting learning rate percentages. Based 
on these results, the number of neurons in the hidden layer 
was set at 14. Because of the lack of droplet size variables in 
available icing data bases, the model was not validated, which 
will be the subject of  a future study.  

 
Table 3: Results of experiments based on learning rate percentage versus 

number of neurons in hidden layer  
 

LEARNING RATE (%) NEURON
S IN 

HIDDEN 
LAYER 

Glaze Hard rime Soft rime Uncertain

6 95.37 78.22 85.06 96.24 
8 98.56 91.21 84.98 98.47 
10 99.09 95.93 95.31 99.05 
12 100 99.16 98.49 99.95 
14 100 100 100 100 
16 100 100 100 100 
18 100 100 100 100 

VI.  CONCLUSIONS 
In this paper, two models based on neural networks are 

proposed to predict accreted ice type using meteorological 
parameters. The first one is a two-input neural network model 
which makes use of temperature and wind speed as the input 
parameters for determining four ice types, soft rime, hard rime, 
glaze, and wet snow. This model was found to have a 
predictive performance of more than 99% with both the 
training and test data sets. The second one is a three-input 
neural network model which utilizes temperature, wind speed, 
and droplet size as input parameters in order to determine in-
cloud ice types. The model has a performance of 100% with 
the training data set. However, because of the lack of the 
droplet size parameter in the available icing data, it was 
impossible to validate this model. It should be noticed that in 
spite of good results reported, the accuracy of the models is 
dependent on the accuracy of the references used for creating 
the training data sets. So, such models are valid and reliable as 
long as the references used for creating training data set also 
are.  
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