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Fig. 4. Test spans seen from measuring towers in the 400 kV OHTLs. 

In the test spans, the conductors are strung on wooden poles 
10 m above ground.  End tension measurements are made with 
load cells connected with data loggers.  The tension recorders 
measure tension at 0.5-1 Hz and store maximum, minimum 
and mean values at 10 minute intervals. Mechanical 
dynamometers are also installed to give maximum value in 
case of failure of the electronic force recorders. Ambient 
temperature measurements are obtained every 10 minutes at 
the same height above ground as the conductors. 

  
Fig. 5.  Measurement equipment.  OHTL to left and test span to right 

The measurements of the conductor’s end tension are 
obtained in test spans, values are converted into external load 
per unit length, using the geometry of the test span and 
mechanical properties of the cable and guys.  It is assumed 
that loading is equally distributed along the span.  

Load measurements in the 400 kV lines are obtained with a 
load cell fitted between the tower bridge and the insulator 
string of the middle phases.  A reading is taken from the 
instruments every 5 minutes, and registered if different (by a 
certain tolerance value) from the last registered value. The 
data series registered is then converted to a 10 minute 
maximum, minimum and mean value data series for analysis 
and comparison to the test span series. 

III.  DESCRIPTION OF ICING AT HALLORMSSTADAHALS 
Ice accumulation is frequent every year at 

Hallormsstadahals. The period with ice on test span A is on 
the average 51 days per year (annual summarized) and has 
varied between 10 to 75 days in the last years. The annual 
summarized duration of accretion has varied between 4.5 to 39 
days with an average of 23 days per year (Fig. 6). This leads to 
classification of the severity of icing to site icing index 
between S4 and S5 according to the EUMENTNET/SWS II 
classification system as presented in [3], i.e. icing severity 
classified between strong and heavy.  

 
Fig. 6. Icing in test span A. Accumulation time and time with icing (annual 

summarized). 

The icing type at Hallormsstadahals is most often in-cloud 
icing, with an average temperature of -3.6°C at the time of ice 
accretion with a standard deviation of 2.2 °C (Fig. 7). Ice 
shedding occurs at a wide temperature range, at an average of  
-1.8 °C with a standard deviation of 2.7 °C. Fig. 8 shows the 
relationship between ice shedding and temperature, where 
shedding is given as the reduction of ice load within 10 
minutes. The peak load reduction event in Fig. 8 is shown in 
more detail in Fig. 18. 

 

 
Fig. 7.  Average temperature at the time of ice accumulation in test span A. 
 

 
Fig. 8. Ice shedding in test span A, period 1997-2009. 
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to duplex conductor (2x39.2mm AACSR) in parallel OHTL 
FL4-400 kV.  Measurements show that the simplex conductor 
experiences in general higher ice load than each of the duplex 
sub-conductors.  At lower loading, up to 50 N/m, it is only 
moderately higher, but in the two events with high loading 
>120 N/m (on the simplex) it becomes greater by factor of 2 to 
4.  It is not possible at the current stage to conclude if this 
difference of the high loading is typical or an exceptional case.  
However, the loading curves show that the difference is in line 
with the generally recognized knowledge that rotational 
stiffness of the conductor bundle plays an important role.  The 
higher rotational stiffness of the duplex conductor leads to a 
more elongated ice shape that falls off before the semi-circular 
shape of the simplex conductor.  The higher rotational 
stiffness also reduces the accretion rate above a certain load 
level.  There are indications that the accretion rate slows down 
at around 70 N/m for each of the bundle sub-conductors. 

A comparison was made on ice accretion for different sizes 
of stranded conductors. Measurements were obtained from 
two 80 m parallel test spans, A and C. Conductor diameters of 
18 mm, 28 mm and 49.9 mm in test span C were compared to 
a 28 mm conductor in test span A.  The results revealed a 
tendency of smaller conductors to experience higher loading. 
A definitive difference in accretion rate was not observed and 
the higher loading on the smaller conductors is primarily 
explained by more frequent ice shedding of bigger conductors. 

A comparison was made on ice accretion on the same 
conductor (49.9 mm AACSR) between a transmission line 
installed with simplex conductor (FL3-400 kV) and a test span 
with 80 m long spans and attachment at 10 m in height.  The 
results revealed reasonably good correlation.  The most 
extreme loading, is though much higher for the OHTL due to 
ice shedding in the test span.  The ice accretion rate is though 
similar up to 130 N/m.  Ice shedding also explains why the 
OHTL experiences a slightly higher value in the second 
highest case. 

When comparing maximum loading, it was found to be of 
major importance to view and consider accretion curves and 
ice shedding that takes place in maximum icing events.  Both 
factors play an important role for the extreme ice loading and 
the influence of ice shedding should not be underestimated.  
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