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Abstract—This paper presents a numerical icing model simulating 

rime ice deposit on conductor bundles. Due to the assumptions 

made in the flow calculation existing numerical icing models are 

restricted to single cables. To overcome this restriction the Finite 

Element Method with a Reynolds Average Navier-Stokes (RANS) 

solver is used to calculate the incompressible and isothermal 

Navier-Stokes equation for a two-dimensional flow field. The 

closure problem of the RANS equations is addressed by a k-εεεε 

turbulence model. The fluid domain is discretized by a mapped 

boundary layer mesh in vicinity of the bodies in the stream and 

with a free mesh in the remaining domain. The multiphase flow of 

air and precipitation droplets is modelled with a Lagrangian 

approach, meaning that individual particle trajectories are 

computed. Any effect of the particles on the fluid flow is 

neglected. This one-way coupling of the fluid dynamics and the 

droplet motion is justified, since a low particle concentration in 

the flow is presumed. The particle trajectories are governed by 

Newton’s second law, taking aerodynamic drag, gravity and 

buoyancy into consideration. The solver transfers this second 

order ordinary differential equation (ODE) into a pair of coupled 

first order ODE. These equations are then solved by a pair of four 

and five order Runge-Kutta algorithms. The particle trajectories 

provide the impinging location of the droplets on the cable or, 

respectively, the ice surface. The mass flux of icing particles can 

be visualised as stream tube reaching from the undisturbed flow 

to the surface, limited by the computed droplet trajectories. 

Within each tube the particles stream from the undisturbed flow 

to the surface, where the evolution of the ice front is determined. 

Hence, the ice accretion is calculated iteratively, accounting for 

geometrical changes due to ice deposit in the flow calculation. 

I.  NOMENCLATURE 

Ap  particle cross-section [m²] 
ap  particle acceleration vector [m/s²] 
CD  drag coefficient [−] 
Cµ   model constant [−] 
Cε1  model constant [−] 
Cε2  model constant [−] 
dp  particle diameter [m] 
ei  ice evolution vector [m] 
F  force vector [N] 
g  gravity vector [m/s²] 
k  turbulent kinetic energy [J/kg] 
l  length along a flat plate [m] 
LWC  liquid water content in the air [g/m³] 
MVD  medium volume diameter [µm] 
mp  particle mass [kg] 
p  pressure [N/m²] 
R  Macklin’s Parameter [−] 

Re  Reynolds number [−] 
Rep  particle Reynolds number [−] 
Rel  Reynolds number of a flat plate [−] 
t  time [s] 
tint  time step of the icing model[s] 
Ts  surface temperature [°C] 
U  average velocity vector [m/s] 
u  velocity vector [m/s] 
up  particle velocity vector [m/s] 
u0  free stream velocity [m/s] 
up,0  particle velocity in the undisturbed flow [m/s] 
upi0  particle impact velocity [m/s] 
urel  relative velocity vector [m/s] 
Vp  particle volume [m³] 
α  collision efficiency [−] 
αi  particle impact angle [°] 
β  collection efficiency [−] 
χ  accretion efficiency [−] 
δ  accretion rate [m] 
δv  depth of the viscous boundary layer [m] 
ε  turbulent dissipation rate [m²/s³] 
µ   dynamic viscosity of the fluid [Ns/m²] 
µT   turbulent viscosity of the fluid [Ns/m²] 
ν  kinematic viscosity of the fluid [m²/s] 
ρi  ice density [kg/m³] 
ρp  particle density [kg/m³] 
ρf  fluid density [kg/m³] 
σk  model constant [−] 
τ  stress tensor [N/m] 

II.  INTRODUCTION 

TMOSPHERIC icing occurs when freezing raindrops, 
supercooled cloud droplets or snow flakes hit a surface. 

This phenomenon can cause significant damage to electric 
power transmission networks, especially in combination with 
wind. Therefore shape and density of ice forming on cables are 
of major interest in investigating the risk of failure. Large 
amplitude oscillations at low frequencies, or also twisting due 
to asymmetrical icing of cables, can cause fatigue damages. In 
extreme events atmospheric icing can cause severe damage on 
towers and power lines [1,2]. A large number of small-scale 
failures can cause enormous damage just as well as a single 
major winter storm event [3,4]. Examples of such events took 
place in northern America in 1998 and to a much smaller 
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extent in Germany in 2005, where the devastating power of 
winter storms left many people without electricity for weeks 
and caused significant monetary damage [5,6]. By causing 
cascading problems, with time black outs have major effects 
on telecommunication, transportation, money transfer and 
industrial production. Even essential needs like food supply 
and production and medical services are in danger after a 
certain period without electricity [7].  

The following three reasons make it seem useful to develop 
a simulation scheme allowing for particle motion based on the 
stream occurring around conductor bundles: Firstly, 
meteorological observations from the 1950s give a first hint 
that tandem arrangements of cylinders have an effect on the 
icing process [8,9]. Secondly, the vulnerability of modern 
societies to blackouts is growing with the increasing demand 
of energy and increasing use of capacity. Since public 
authorities, in Germany for example, tend to restrict the 
construction of new transmission lines, bundled conductors are 
used increasingly to cope with the rising energy demand [10]. 
Thirdly, available numerical models are restricted to single 
cables due to the assumptions made in the air flow calculation 
[11,12,13,14,15,16]. A good overview of cable icing models 
and the mechanism of ice accretion is given by Poots [17] and 
by Makkonen and Lozowski [5,18].  

Modelling atmospheric icing includes a computation of the 
mass flux of icing particles as well as a determination of the 
icing conditions: Icing conditions are defined by the heat 
balance on the ice surface. Messinger [19] proposed a basic 
scheme to investigate heat balances on ice surfaces. The icing 
condition influences the accretion mass and furthermore the 
evolving ice density. Three major types of deposit, namely 
rime, glaze and wet snow lead to significant loads on 
structures. For glaze ice and wet snow formation the heat 
balance on the ice surface is very important. It is termed as wet 
growth, because a liquid layer forms on the ice surface. In 
contrast to that, rime ice develops in dry growing conditions. 
The heat transfer within the system can be neglected, because 
the latent heat of the droplets released during freezing is 
dissipated without changing the state of the ice and the surface 
conditions, hence no liquid layer arises. Computation of the 
mass flux of icing particles is an important factor in the ice 
accretion. Shape and to a smaller extent also density of ice 
evolution are influenced by the characteristics of the particle 
trajectories.  

The present work focuses on the mass flux of icing droplets 
and the formation of the ice front. In a first step, this model is 
limited to a dry ice growing regime, in other words, only rime 
ice evolution is considered. With further development the 
model is to include also wet ice conditions. 

III.  FLUID DYNAMIC MODEL 

To calculate air flow around the conductors the finite 
element software COMSOL Multiphysics and a Reynolds 
Average Navier-Stokes (RANS) model are used [20]. The 
fluid dynamic calculation is based on the incompressible and 
isothermal Navier-Stokes equation. It assumes a constant 

density and a constant temperature throughout the fluid 
domain. Hence, the conservation of mass becomes 

 0∇ =u  (1) 

where u is the velocity vector. Assuming the fluid to be 
Newtonian and adding the Stokes assumption the stress tensor 
becomes  

 ( )( )T
τ µ= ∇ + ∇u u  (2) 

where µ is the dynamic viscosity. Therefore the conservation 
of momentum is 

( ) ( )( )( )T
p

t
ρ ρ µ

∂
+ ∇ = −∇ + ∇ ∇ + ∇ +

∂

u
u u u u F (3) 

with ρf is the fluid density, p is the pressure and F is the force 
vector acting on the body.  

The conservation of energy is independent of the other two 
conservation equations, because density and temperature are 
assumed to be constant. Therefore it is not included in the flow 
calculation [21]. 

It is computational very expensive to resolve the smallest 
scales of a turbulent flow with an adequately fine mesh and 
time step. Using a coarser resolution leads to a closure 
problem of the equation. To solve the closure problem the time 
averaging by the RANS approach and a k-ε turbulence model 
is chosen [21]. In spite of its weakness in the pressure 
representation on body surfaces the k-ε model was preferred at 
this stage, because of its tendency to ease convergence. A k-ω 
turbulence model, known for its superior performance in 
external flow calculations, might be used in a later stage [22]. 

The model introduces the turbulent kinetic energy k and the 
dissipation rate of turbulence ε as independent variables. The 
closure problem is then solved using the turbulent viscosity, 
which is determined by 

 
2

T

k
Cµµ ρ

ε
=  (4) 

where Cµ = 0.09 is a model constant. The turbulent kinetic 
energy k is derived from the Reynold stresses, which are 
expressed by  

 
T

k

k
k k

t

µ
ρ µ ρ

σ

  ∂
− ∇ + ∇ + ⋅∇   ∂   

U
 (5) 

 ( )( )
21

2

T

Tµ ρε= ∇ + ∇ −U U  

where U is the average velocity vector and the model constant 
σk = 1.0. The corresponding equation for ε can only be 
determined in a similar way when all terms that have no 
equivalent term in the equation for k are excluded. The 
equation is then defined as 
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where the model constants are Cε1 = 1.44, Cε2 = 1.92 and  
σε = 1.3. They are a commonly used set of model constants 
developed by Launder & Sharma and published in Wilcox 
[23].One important assumption made by this turbulence model 
is that the equilibrium of turbulence is in boundary layers and 
therefore formation and dissipation of turbulences are equal. 
Since this is not always true, the spatial extension of 
recirculation zones is usually underestimated [20]. 

The extension of the recirculation zone is expected to have 
a significant influence on the ice formation process on the 
downstream cable. Therefore the simulation results can 
underestimate the influence of the wake on the downstream 
cable. 

 

A.  Solver 

The equation system is solved by a segregated solver 
algorithm, where the variables are divided in groups. The 
velocity components and pressure compose the first group and 
the logarithm of turbulent kinetic energy and of turbulent 
dissipation rate are the second group. The linear system solver 
Pardiso is applied to each group [24,25]. It terminates, when 
the estimated error of both groups is smaller than the given 
tolerance [20]. The final error estimate of the results for both 
groups is e<0.001. 

The chosen liner system solver and their settings were 
examined along a test scheme of the DFG (German Research 
Foundation) [26]. The benchmark test investigates a 2D flow 
field passing a cylinder. It gives a feasible range for five 
parameters describing the flow field. In a stationary 
computation the aerodynamic lift and drag coefficient, the 
length of the recirculation zone, the pressure difference at the 
stagnation point and the subtending point in the wake are 
determined. In a transient calculation the maxima of lift and 
drag coefficient and in addition the Strouhal number are 
defined. The settings achieved the requirements satisfactorily. 

 

B.  Model Geometry and Boundary Conditions 
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Fig. 1.  Model Geometry 

 
 

Figure 1 shows the model dimensions, which are chosen to 
provide enough clearance between the external boundaries and 
the iced cable. So that even for the largest possible blockage in 
the flow, the influence of the boundaries on flow around cable 
and ice body is irrelevant.  

In contrast to investigations commonly undertaken in the 
field of aeroelasticity, the gravity needs to be included in the 
flow calculation to describe the particle motion correctly. 
Hence the boundary conditions need to balance the hydrostatic 
pressure. For this purpose pressure constrains are applied on 
vertices along the inlet and outlet boundary. At the inlet and 
outlet boundaries the velocity is set to be equal to the free 
stream velocity. Cable and ice surface are modelled as a solid 
wall, where the velocity profile at the cable and ice surface is 
described by the logarithmic wall function.  

To develop an icing algorithm capable to simulate accretion 
on a conductor bundle, this investigation focuses on two cables 
in a tandem arrangement. If the algorithm proves successful 
for two cables, it can easily be applied to other bundle 
geometries with more cables.  

Further bundle geometries will be investigated in the future. 
Power transmission lines are also constructed with bundles of 
three, four or even more cables [10].  
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Fig. 2.  Surface approximation algorithm evaluation the supporting points (Ni) 
with the contact points of ice and cable surface (A1 and A2) and centre of the 
cable (M). 

 
The ice surface calculated by the icing model has often 

coarse uneven areas. Thus a fine resolution of the surface can 
lead to problems with the meshing algorithm and convergence 
of the solver. Resolving the coarse areas of the surface has 
only a small impact on the final result. Therefore an algorithm 
is developed to approximate the ice surface by splines to 
achieve geometry with continuous curvature. First, the centre 
of the cable (M), the contact points of the ice and cable surface 
(A1 and A2) and the point furthest away from the cable (N1) 
are determined. Then the algorithm evaluates the distance 
between neighbouring points and between the connecting line 
and the ice surface. If one of these limits is exceeded, a new 
point (Ni) is inserted. The algorithm works also in case of a 
closed ice surface, where A1 and A2 are at identical 
coordinates. If the cable, due to weak torsional stiffness, 
rotates under the eccentric ice load during the icing process, 
the ice can grow around the entire circumference of the cable. 
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C.  Mesh 

The fluid domain is meshed with a free mesh. A boundary 
layer mesh is inserted at the cable surface or respectively the 
ice surface. The depth of the boundary layer mesh is chosen to 
be 1.5 times the depth of a boundary layer derived by an 
empirical equation for turbulent flows and flat plates [27]. 

 ( ) 1 / 5

l

0.37l
l

R e
∂ =  (7) 

where l is half of the cable and ice body perimeter and Rel is 
the Reynolds number  

 0
l

u l
R e

v
=  (8) 

where u0 is the free stream velocity and ν is the kinematical 
viscosity. 

Using wall functions on the surfaces leads to an additional 
requirement on the mesh. The boundary layer depth in viscous 
units should be in the range of 30<y

+<300 [20]. The value of 
y

+ depends on the dimensions of the boundary layer mesh. 
This requirement is fulfilled. 

IV.  PARTICLE TRAJECTORY CALCULATION 

The Lagrangian approach is used to describe particle 
motion in the air flow, meaning that individual particle 
trajectories are modelled. This approach is used even though it 
does not provide information about the particle density in the 
flow field. Presuming a low particle concentration in the flow, 
decoupling of the flow and the trajectory calculation and 
neglecting any effect of the particles on the air flow is justified 
[28]. Consequently the mixed stream of air and precipitation 
droplets is modelled has a one-way coupled two-phase flow. 
The motion of the individual particles is described by 
Newton’s second law. The solver rewrites this second order 
ordinary differential equation (ODE) into a pair of coupled 
first order ODE. A four and five order Runge-Kutta algorithms 
are used to solve two equations in each direction, one for 
velocity and one for spatial location [20]. 

 
The governing equation for the particle motion is given by 

 p pm =∑a F  (9) 

where mp particle mass, ap particle acceleration and F the sum 
of drag, buoyancy and gravity acting on the particle. Other 
forces acting on the particle are neglected and the particles are 
assumed to be spherical. Itemising the force vector leads to an 
expression for the aerodynamic drag force, depending on the 
relative velocity 

 rel p= −u u U  (10) 

where up is the particle velocity vector. Furthermore we need 
an expression for the force due to density differences of 
particle and fluid. The equation can then be written as 

 

f

p p D p rel rel

f p p p

m C A
2

            V V

ρ

ρ ρ

= − ⋅ ⋅

− +

a u u

g g

 (11) 

with CD the drag coefficient, Ap the cross-section and Vp the 
volume of the particle, ρp is the particle density and g the 
gravity vector. 

In order to rearrange equation 11, the particle Reynolds 
number is introduced as 

 
rel p f

p

d
Re ,

ρ

µ
=

u
 (12) 

where dp is the droplet diameter. Now equation 11 can be 
written as 

 

( )

D p

p p p rel

p

p f

C Re
m 3 d

24

d
            

6

π µ

π
ρ ρ

= − ⋅ ⋅

+ − ⋅ ⋅

a u

g

 (13) 

where ρp is the particle density. To solve the equation, the 
relation of CD and Rep needs to be defined. For Rep<<1, CD is 
given by the Stokes’s law. When Rep increases empirical 
equations need to be applied. Based on experiments by 
Langmiur and Boldgett [29] the following set of equations is 
proposed. 

d p 0.3289 0.4561

p p

p

C Re
1 0.391 Re 0.5648 Re

24

                for   0 Re 10

= − ⋅ + ⋅

< ≤

 (14) 

d p 0.6536

p

p

C Re
1 0.1767 Re

24

               for   10 Re 200

= + ⋅

< ≤

 (15) 

d p 1.048

p

p

C Re
4.001 0.01052 Re

24

                for   200 Re

= − ⋅

<

 (16) 

The experiments by Langmuir and Blodgett cover a wide 
range of particle Reynolds numbers. Regarding transmission 
line icing only the range of low Rep is important. Therefore the 
formulae presented here are designed to fit best low Rep. The 
equations have a coefficient of determination of over 99% for 
Rep<2000. Beyond this range the accuracy decreases only 
slightly. 

The distribution of droplet diameters in natural precipitation 
is not uniform. It can be described by droplet spectra. 
Calculating the motion for every single droplet diameter 
occurring in a given precipitation is computationally 
expensive. But in the scope of transmission line icing it is 
possible to deduce the behaviour of the whole spectrum from 
the motion of a droplet of medium volume diameter (MVD), 
with sufficient accuracy [16]. 
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Fig. 3.  Experimental results (○) and an empirical equation (--) published by 
Langmuir and Blodgett [29] are compared with the proposed approximation 
(−) of the aerodynamic drag (CDRep/24) for Reynolds numbers of spherical 
particle (Rep). 

 

V.  ICE EVOLUTION MODEL 

The impinging locations of the particle trajectory determine 
mass flux calculation of icing particles on the surface. The 
mass flux can be visualised as a stream tube starting from the 
undisturbed flow to the surface, limited by the computed 
droplet trajectories. Within each tube the particles stream from 
the undisturbed flow towards the surface. Once the particle 
flux is given, the computation of the ice evolution can start.  

The implementation of the icing model follows the 
fundamental mechanism illustrated by Diem [8] and 
Makkonen [5]. In order to represent the program structure, the 
notation and the arrangement of the equations are different. 
The ice growth is expressed by a vector normal to the surface. 
It includes four parameters, namely collection, catch and 
accretion efficiency. The fourth parameter is termed accretion 
rate and states the maximal growth rate under the given 
conditions during one time step. 

The local collision efficiency is the ratio of droplet mass 
flux in the undisturbed incoming flow to mass flux of droplets 
impinging on the surface. 

 0

i

A

A
α =  (17) 

where A0 is the initial trajectory spacing in the undisturbed 
flow and Ai is the corresponding spacing of the impinging 
location on the surface. In case of freezing rain the calculation 
leads to α≈1. 

For rime ice accretion due to in-cloud icing the collection 
efficiency is assumed to be 

 1β =  (18) 

In case of freezing rain collection efficiency is calculated as 
proposed by Poots [17] 

 ( )icosβ α=  (19) 

where αi is the impact angle of the droplets. Rime ice accretion 
due to both in-cloud and freezing rain lead to streamlined ice 
deposit. In-cloud icing conditions lead to decreasing α, 
freezing rain to decreasing β towards the edges. However one 
can regard the product of both as catch efficiency. 

The accretion efficiency accounts for particles that hit the 
surface, but do not freeze and are either enclosed unfrozen in 
the deposit or leave the surface due to wind drag and gravity. 
Since only rime ice accretion is considered here and all 
impinging particles freeze instantly, the accretion efficiency is  

 1χ =  (20) 

In order to define the ice accretion ratio the ice density is 
determined by empirical equations. Following the investigation 
of Fu, Farzaneh and Bouchard [30] the equations derived by 
Bain and Gayet [31] where chosen. 
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 (21) 

Macklin’s Parameter is [32] 

 
p ,i

s

MVD u
R

2 T

⋅
=

⋅
 (22) 

where MVD is the medium volume diameter, up,i is the impact 
speed and Ts is the surface temperature. In conjunction with 
the liquid water content (LWC) in the air the ice accretion ratio 



IWAIS XIII, Andermatt, September 8 to 11, 2009 

 
Fig. 3.  Particle trajectories and ice deposit on upstream cable in a tandem 
arrangement with a horizontal spacing of s=0.4m. Simulation parameters are 
wind velocity u=5m/s, particle diameter MVD=28µm, ambient temperature 
Ta=–15°C and cable diameter d=40mm. 

 
is given by 

 
p ,0 int

i

LWC u t
δ

ρ

⋅ ⋅
=  (23) 

The ice front growth along the vector is then expressed in 

 i α β χ δ= ⋅ ⋅ ⋅ ⋅e n  (24) 

where up,0 is the particle velocity in the undisturbed flow, tint is 
the time interval of ice evolution with unchanged flow field 
and n is the vector normal to the surface. On the basis of the 
new ice geometry a new simulation step is started. 
 

In order to verify the model, two test cases for rime ice 
accretion on single cables due to in-cloud icing where 
simulated. The test cases consist of numerical and 
experimental results published by Fu, Farzaneh and Bouchard 
[30]. Over all the comparison showed satisfying results [33]. 
But further comparison with experimental findings especially 
of conductor icing experiments should be done in the future.  
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