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Abstract—Icicles are important in recent icing models. A
numerical simulation of glaze icing in freezing rain with icicle
growth by Makkonen has shown that when the air temperature is
high enough for icicle growth, the total load may be much higher
than at any other temperature. When an icicle grows, the latent
heat released in the freezing of ice beneath the water film must be
removed from the ice and water interface. The rate of heat loss
from the surface to the air by thermal convection and evaporation
controls the growth rate of the ice. In the icicle growth and wet
accretion model, it is important to estimate the local heat transfer
coefficient. In previous studies on the subject of ripple formation
mechanisms on the surface of icicles, one of the authors herein
showed that the change in the mean growth rate of icicle radius
affects the magnitude of amplification rate for disturbances of the
ice-water interface, but the characteristic wavelength of the
ripples does not change. However, it was assumed in previous
studies that there is no airflow around icicles. If we take into
account natural or forced convection of the air, we have to
consider airflow within the thermal boundary layer around
icicles. In this paper, we extend the previous theoretical
framework by taking into account the effect of airflow on the
morphology of the ice-water interface.

I. INTRODUCTION

HE traditional approach in wet icing modeling has been to

ignore the dynamics of the surface flow of unfrozen water
[1]. Since the situation of wet growth is analogous to icicle
growth, icicles have become an important aspect of icing
models today. When there is a source of water at the root of
the icicle, a water film forms on the icicle surface. The rate of
heat loss from the ice-water interface to the environment
through the water film controls the growth rate of the ice. One
side of the water film is a water-air surface and the other side
is growing ice. As a result of the instability of the ice-water
interface, the flow in the water film may be changed depending
on the morphology of ice. This means that two interfaces have
to be dealt with, making this one of the more complicated
moving boundary problems with phase transition.

When an icicle grows, we often observe ring-like ripples on
the surface about one centimeter in wavelength. Recent
theoretical research to explain the underlying dynamic
instability that produces ripples is based on the assumption that
ice is covered with the supercooled water film in the mean
thickness /,, and that there is no airflow ahead of the ice
surface, as shown in Fig. 1 (a) [2]-[4]. The thickness of the
water film is given by h, =[3v, /(gsin&)Q/I11" [5], [6],
where Vv,

is the kinematic viscosity of water, g the

gravitational acceleration, Q/I [(ml/h)/cm] the water supply

rate per width from the top, and @ is the inclination angle with
respect to the horizontal plane. hy, =100 x4 m for typical

values of Q/1[7].

However, as indicated by the experimental observation that
the increase in wind speed leads to an increase in the mean
growth rate of icicle radius [7], heat transport can be greatly
influenced by the presence of forced convection airflow. In
order to clarify the effect of the enhancement of heat transfer
due to air convection in the thermal boundary layer on the
morphology of ice, we extend the previous two-dimensional
model of ice growth under a supercooled water film flow to
include a natural convection airflow adjacent to the ice surface.
We assume that this flow occurs by buoyancy force, which
arises by density difference due to latent heat released from the
ice-water interface into the air close to the ice surface [8]. As a
result, as shown in Fig. 1 (b), a rising thermal boundary layer
is created ahead of the ice surface.
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Fig. 1. (a) is the absence of airflow, (b) is the presence of a natural
convection airflow. h is the thickness of the water film. The air temperature

is Ty, at the water-air surface and T, atalength & .

In the absence of airflow, at the inclination angle of

@ =r/2, we derived a formula to determine the wavelength

of ripples: 4 = 27r(a2h0Pel /33, where a = [7/(,018)]1/2 is

the capillary length associated with the surface tension ¥ of
the ice-water interface [6], p, , the density of water, and Pe,,

the Peclet number, which is the ratio of the heat transfer due
to water flow to that due to thermal conduction in the water
film. In previous studies [2]-[4], we assumed a linear air

temperature profile ahead of the water-air surface: T, =T}, at

a
the water-air surface and 7_"a =T, at a length scale J , as
shown in Fig. 1. (a), and the latent heat was assumed to be
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transported in the air by conduction only. We showed that the
length scale O only appears in the ice growth rate

V =-K,T,/(LS), but the wavelength A of ripples is not
relevant to & . Here K, is the thermal conductivity of the air

and L, the latent heat per unit volume [4]. However,  was
an unknown parameter and the physical meaning of this length
scale was not given. When we take into account natural
convection of the air around icicles, d is regarded as the
thickness of the thermal boundary layer [9]. If & is also
important in determining the wavelength of ripples, the above
formula for A would be modified to include & . In this paper,
assuming a mean air velocity profile and a mean air
temperature profile in the boundary layer as shown in Figs. 2
(a) and (b), respectively, a linear stability analysis for a
disturbance of the ice-water interface during ice growth is
performed.
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Fig. 2. (a) Dimensionless air velocity profile U, 4+ » (b) Dimensionless air

temperature profile fa* with respect to dimensionless coordinate Y .

II. THEORY

A. Governing equations

We consider the laminar natural convection flow over semi-
infinite ice covered with a supercooled water film as shown in
Fig. 1 (b). Using the stream function ¥, , the velocity

components in the x and y directions in the water film,
u, =0y, /dy and v, =-dy,/dx , are governed by the

Navier-Stokes equations driven by gravity force and the
continuity equation [5], [6]:

2 2
Oy oy Oy O L [0 O g (1)
ot ox dy p, ox o’ oy’
2 2
ﬂ+L¢,@+vlﬁ:—ig+v, v, 9 —gcos, (2
ot ox ay p; Oy o oy?
d d
G Ny, (3)
ox dy

where v, =1.8x107° m?/s and p; =1.0x10° kg/m’ are the
kinematic viscosity and density of water, g, the gravitational
acceleration, and p,, the pressure in the water. The equations

for the temperatures in the ice 7, and water 7, are given by

or,  [0°T, +82Tu

a o o S @
of, oI, 0T, o°T, 7T,
=tV =K 5t | )
ot ox dy ox” dy

where &, =1.15x107° m%s and &, =1.33x107" m¥s are the

thermal diffusivities of the ice and water, respectively.
Employing the Boussinesq approximation, the air velocity
components in the x and y directions, u, =dy,/dy and

v, =—0y,/dx, and air temperature T, are governed by the

Boussinesq equations [6]:

du, du, du, 1 9Py —Pa) 9%u, d’u, .
a e Ty T T a e Ty AT sind,
(6)
_ 2 2
Moy Vo, Mo 1 0PaPa) (V4 3V |, pr g ooy
or x ad  p. Oy u’ oy’
(7
ou, dv,
Ty 0 ®)
ox dy
2 2
or, ot ar,_ (91, 97,
+Mu +Va = Ku > + > | (9)
ot ox dy ox dy

where y, is the air stream function, p,is the air pressure,

D40 the static air pressure, p,, , the air density at temperature

T.,and v, = 1.3%x107 m%s and p= 3.7x1072 K 'are the
kinematic viscosity and the volumetric coefficient of thermal
expansion of the air, and x, = 1.87x10™> m?s is the thermal
diffusivities of air.

B. Boundary conditions
First, we consider the hydrodynamic boundary conditions.
Both water velocity components u;, =dy,/dy and

v, =—dy, /dx at a disturbed ice-water interface, y = ¢{(r,x),
must satisfy
(10)

The kinematic condition at a disturbed water-air surface,

=0, v, 1,_p=0.

9 +uy % _ |
ar by T (1)
At the water-air surface we impose the free shear stress:
| v g, (12)
dy - ox =&

and the normal stress including the stress induced by the
surface tension ¥ =7.6x107> N/m of the water-air surface
must balance the atmospheric pressure F,:
aZ
i
y=¢ X

For both air velocity components

13)

ov
—p e R2pv,—4
D ly=¢ pllay

u, =0y, /dy and
v, =—0V, /dx at the water-air surface and far away from the

ice surface, we impose
u, |},:§=0, vV, |),:(§=0, u, |y:5=0, vV, |),:5=0. (14)

Second, we consider the thermodynamic boundary
conditions. The continuity of the temperature at a disturbed
ice-water interface is

Tl ly:é'sz :é’szl +ATsl ’ (15)

ly
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where T; is the temperature at the flat ice-water interface and
AT, is a deviation from it when the ice-water interface is
disturbed. The heat conservation at the ice-water interface is

L(V+£)=Ks o, K,ai
ot dy dy

- ; (16)
y=¢ y=¢
where L =3.3x10% J/m® is the latent heat per unit volume,
and K, =222 J/(m K s) and K; =0.56 J/(m K s) are the

thermal conductivities of the ice and water, respectively. The
continuity of the temperature at a disturbed water-air surface is
(7)

where T;, is a temperature at the water-air surface. The heat

Tl ly:ﬁzTa |y:§:Tlu >

conservation at the water-air surface is
oT oT
S =K (18)
V= Y=t
where K, =0.024 J/(m K s) is the thermal conductivity of

the air. Far away from the ice surface the air temperature
satisfies
Ta |),:5= TDo .

(19)

C. Perturbations

Since a ring-like structure encircles the icicles and there is
no noticeable azimuthal variation on the surface of the icicles,
it is sufficient to consider only one-dimensional perturbation in
the X direction of the ice-water interface,
§(t,x) =, explor +ikx], where k is the wave number and
(i)

oc=0" +ic"”, with ") being the amplification rate and

v, =-0" /k being the phase velocity of the perturbation,

and ¢, is a small amplitude of the ice-water interface. We
separate &, v,, w,, p,, T,, T, and T, into unperturbed
steady fields and perturbed fields with prime, as
follows: &=hy+&" . v, =W +y] . V.=V, +¥, .
pi=PR+p). T,=T,+T/ ;=T +T/ and T, =T, +T, .
We suppose that the respective perturbed parts are expressed
as follows:

&, x) S
wixy) | | B
v, xy) | | F.()
pit,x,y) | =| I1,(y) |explor +ikx] , (20)
T(t,x,y) g;(»)
T/(t, x, y) & (y)
T,t,xy)) \g.(»

where &, F;, F,, II;, g, g, and g, are the amplitudes of

respective perturbations and are assumed to be in the order of
¢, - The following calculation is based on a linear stability

analysis taking into account only the first order of ¢, .

D. Equations of unperturbed part in the air boundary layer
We introduce the following dimensionless variables:

Xo=x/Ly, o =Gr'*y I Ly=y18, Up=U,lug,

V=GN, lu, and T, =(T,-T.)/T, ~T.,) , where
Gr, = gPAT, L} Iv? s Grashof
o =8PAT,Ly . & = LiGr, " =1vaLy (gBAT I, Ly a

characteristic dimension of the body, AT, the temperature

the number,

difference between the water-air surface and ambient air
temperature. For example, the values of Gr,, u,, and J,are

2.1x10° , 0.6 m/s and 4.6 mm, respectively, for L, =1 m and
AT, =10"°C.

Applying the boundary layer approximation to the
Boussinesq equations (6)-(9), ﬁa*(X*,Y*) s ‘Z*(X*,Y*) and

7_"0* (X«,Y.) are governed by [6], [8]

oU . V..
4 =0, 21
oX. Y. @b
_ _ e
7. U . s U _ 07U +T..5ind, 22)
0X . 0Y. JY.>
_ _ —
7. oT . 7, dT - _ 0 U;* ’ 23)
0X. dY. Pr, 9Y.

where Pr, =v, /K, is the Prandtl number of the air.
Following the profile method [10], we assume the functional
forms of ﬁu*(X*,Y*) and Y_‘H*(X*,Y*) as follows:

2
Y. Y.
a0* 1- s
6* ( 5* j

2
= Y.
T(X:.Y) =|1- ,
e =[]

U (X:,Ys)=u

(24)

(25)

which satisfy the boundary conditions U . ly,-o=0
Ugplye5.=0 . U, /Vly_5=0 and T,l,_o=1 ,
Tply_5s=0 , OT./0Yl,_5=0 The

Lzl*(X*,Y*) and Y_‘d* (X«,Y.) are shown in Figs. 2 (a) and (b).
From (21),

5| (rY (rY
‘711*(X*’ Y*) = __”‘ao* a 2 = - = .
16X, O: Ox

Substituting (24) , (25) into (22) and (23) and integrating them,
we obtain

profiles of

(26)

1/2 -1/2
uao*:z{gj [%+Praj (X, sin0)"2, @7
1/4 174
X.
5*Ei=2-15”4Pra”2[2+PraJ : . (@28)
9 21 sin @

Here we assume the thickness of the thermal boundary layer
and that of velocity boundary layer to be the same order of J,
thus we put Pr, =1.0.

If we use the temperature profile (25) , the continuity of heat
flux at the ice-water interface and water-air surface yield
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K, h

K T,-T s 5OTG
gtalutafm o Ky 9 . (29)
L 4, K hOG
150

where G,. =0T, /9Ys |y, _o=2/8, . Since &, include the

Prandtle number, (_}a* depends on the Prandtle number. In the

case of Pr, =1.0, we can estimate (_}a* =043 for X. =10
and 0=7/2.

E. Equations of perturbed part in the air boundary layer
Substituting =U,+u, =U, +y, dy ,
—ay/a /ax and T,=T,+T,
complete equations (6), (7) and (9), and introducing the
following dimensionless variables: x. =x/0,, Y. =y/J, ,

- -
V=V, tV, =V, into  the

Uy =Uy Ty, Vo =V, Tty s =1t [ti,g=0W s 0Ys ,
Vo=V, lu,y=—0W,/0x. and T,. =T, /(T,, - T..) ,
quasi-stationary approximation, we obtain the equations for
W and T.:

1 (84%*

in the

5 XA
0x20Y.2

3 3.7 3 3
7. ay/a*Jrayxg* v, ay/auag/a*

, 2 2 ;[ 32 2
W9 O ﬁa*—a%* 9,2 Vi
ox. | ox? Y2 oY, (ox2 ov2

64‘/111*
1/4 aY4 +

o

1 (0T . dT,.
1/4( 3% sinfd — o cosﬁ} (30)
7. a7, . oW, o . v, oT,. oY« T,
1 9T,  O°T,.
= & —a | (31)
Pr,Gr!'* ( oxr oY’ ]
We assume ¥/, and T, to be
Wi = f, (V)& explor +ikx),
T, = H,(Y.)G & explor +ikx] (32)

are dimensionless disturbance amplitude
=&, /6,. Substituting (32) into (30) and
(31), we obtain the following differential equations for the
functions f, and H, :

d4fu _z df,

- Va*

where f, and H,

functions, and &,.

e ( ,u + z,uuGrl/4 )i;—y{z"

{uv . ZV*]df

— 4,
1/4 a*
:ua Ua* + fa
v’ }

oY | dY.
+ iu,Gr,

-G, My ing+ it,G +H , cos6, (33)
d’ H, dH 2. /457
Z e =PV, —+ o +iu, Pr, Gr," U« JH,
ng a’a Y* (/‘l /.l )
+Pr,/ G, a df —zﬂa Pr, Grl'* /G, %T far (34

where u,=ko, , and we have neglected the terms
02U . 10x2, 3>V . /0x? and 9°T,. /dx? in (30) and (31)
because the dependence of the mean velocity profiles U, P
v, and T,.on x. is very small. Since the dependence of U .
and \7a* on X. is small, we solve (33) and (34) with respect
to Y, for a given values of Gr, and X. numerically with the
boundary conditions df, / dY: ly _o=—u 0« / O« , [y ly.0=0,
df,/dY.ly_s =0, and f,|,_s =0 obtained from Eq. (14),
and H,l,_y=1 and H,ly_5=0 .

perturbed part of the air temperature gradient at the water-air
surface as

_hy|_dH,

dY. Y.=0

Here we define the

(35)

F. Equations of perturbed part of velocity and temperature in
the water film

We briefly summarize equations and boundary conditions
for the amplitudes of the perturbed part of the stream function
and temperature in the water film with some modifications. We
note that the amplitudes F;(y) and g,(y) in (20) are

expressed as Fy(y) = f; (1) and g,(y) = H, ()G, &y [2],
where u,, = hygsin@/(2v,) is the surface velocity of the
water film. The unperturbed temperature gradient is given by
G, =—dT; /dyl,o= (T,
linear temperature distribution in the water film. Here T, and

T,

a

—T,,)/ hy under the assumption of a

are temperatures at the ice-water interface and water-air

surface.
From the perturbed parts of (1) and (2), f; is governed by

the Orr-Sommerfeld equation [2]:

d* f d*f,
2 +i Re U*
d X ( ﬂz Hy e, Uy )dy*

, — dU.
- {Uﬁ +ig Re,[,u,zU,* +T;J}fzs

where y. =y/hy, g, =khy and U, =—(2y.

(36)

—y2) is the
velocity distribution in the water film in the unperturbed state.
Re, = u;yhy /v, =30/(2lv,) is the Reynolds number. From
(10)-(13), using the relation & =—(f; 1, /L_/,* l,,-1)¢; for
the amplitude between the water-air surface and ice-water
interface [2], the boundary conditions for fl can be expressed
as [2]:
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Jily.=0=0,
dn| - __d,
dy: $o0 dy: =0
d*f, d*U,. —
; 21| == g | 1U Ny =] iy
Y+ =1 Vs ye=l1
d*f,

—ila/ T, L )f s 3D
yi=l1

= (iﬂ, Re,+ 3;1,2)5i

%

dy?

ye=l
where « =2(cot)y, +2/sin¢9(a/h0)2,u,3 is related to the

restoring force due to the surface tension and gravity force,
which act on the water-air surface [5].
The perturbed part of (9) yields the equation for H; [2]:

) —
d Ijl = (ﬂlz +iﬂ1PelL7l*)H1 _i/ulpelﬂfl’
dys dys
where Tj(y.) = (T (ys)~Ty)(Ty —T,) is the temperature
distribution in the water film in the unperturbed state, and
Pe; =uyhy / k; =30/(2lk;) is the Peclet number.
Since the direction of the x axis in Fig. 1 is opposite to that

(38)

in previous papers [2]-[4], we note that the sign of U, i+ in this
paper is also opposite. Linearization of (17) at y = h,, yields,
to the first order in &, ,
Hilyoa==fil,a /(71* ot (39)
Linearization of (18) at y = h, yields, to the first order in &, ,
dH, I dy. |, =G, f;, _ 1Up |, . (40)

F. Dispersion relation

From the perturbed parts of (15) and (16), the real and
imaginary parts of the dispersion relation for the perturbation
of the ice-water interface give the dimensionless amplification

rate 6 = /(V / hy) and the dimensionless phase velocity

Vo = -V J(kV), respectively,

n__dH” ,
ol =-—1 o (E 120 -1), (41)
dy*
=0
1| dH? ;
Vp* = —— - L +}’ll[l[H[() |y*:0 5 (42)
4 dy* y:=0
where n=K /K; =396 is the ratio of the thermal

conductivity of ice to that of water, H l(’) and H l(i) are the real

and imaginary parts of H, .

III. RESULTS
For the water supply rate per width Q// =50 [(ml/h)/cm]
and the angle 8 =7/2, Fig. 3 (a) shows the dimensionless
amplification rate o) =™ /(\7/h0) versus dimensionless

wave number 4, =kd,. We determine the wavelength from

(r)

the value of x, at which o,’ acquires a maximum value for

a given Q/l and 6. In the presence of an airflow, Gi’)
acquires a maximum value at g, =3.1 (solid line). Since the
wave number k is normalized by &, , the corresponding
wavelength is 0.94 cm from A =279/ 1, . Here we have used

9, =4.6 mm estimated from two parameters L, =1.0 m and

AT, =10"C. At u, =3.1, v,. =0.28 as represented by the

solid line in Fig. 3 (b). While, in the absence of airflow, Gir)

also acquires a maximum value at 4, = 3.1 (dashed line). At

this value, v . =0.61 is represented by the dashed line in Fig.

3 (b). It is found that the maximum value of o!” in the

presence of airflow is greater than the maximum in the absence
of airflow. This indicates that the natural convection airflow

enhances the destabilization of the ice-water interface
compared to thermal conduction.
(a) 008
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= 0.04
o 002
o
B o
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Fig. 3. For Q/I =50 [(ml/h)/cm] and @=7x/2 , (a) dimensionless

amplification rate o;(f) =g\ /(\7/ hy) versus dimensionless wave number

M, =kdy ; (b) dimensionless phase velocity v =—o® /(k\7) versus

p*
dimensionless wave number 4, . Solid lines indicate the presence of airflow,

and dashed lines indicate the absence of airflow.

It is remarkable that the wavelengths of ripples are almost
the same in both cases. When determining the wavelength, we
used §,=4.6 mm. It should be noted that, however, the
wavelength is almost the same for other values of d
estimated from different values of AT,, as shown in Table L.

This indicates that the wavelengths of ripples on icicles are
almost independent of ambient air temperature. In other words,
the wavelengths are almost independent of the length scale J; .

On the other hand, there is considerable difference for v .,

P
which is sensitive to the parameters that characterize the
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thermal boundary layer, as shown in Table I. In the absence of
airflow, v > 0 for all modes, as shown in Fig. 3 (b). While

in the presence of airflow, v . has negative values for some
unstable long wavelength modes. The sign of v . changes
from negative to positive at g4, =2.5.

We note that the mean growth rates V of ice in Table I is
less than the measured values in the experiments [11] by one
order of magnitude. In those experiments, there were large
temperature fluctuations. Larger heat transfer mechanisms
need to be considered, instead of heat transfer due to natural
convection airflow.

TABLE I

The growth rate of ice, vV , the temperature of the water-air surface, 7}, , the
unit of length to characterize the boundary layer thickness, &, , the
wavelength of ripple, A, the dimensionless phase velocity of ripple, v p» for

respective ambient temperatures 7T, .

T°° ‘7 Tla 50 ﬂ' Vp*
o | mh) | (P o) | (mm) | (mm)

-5 | 010 15 55 |94 [034
—10 | 024 3.6 46 | 94 | 027
—15 | 040 6.0 42 91 [ 028
20 | 058 8.6 39 |91 [025

IV. SUMMARY AND DISCUSSION

Although the growth rate of icicle radius and the magnitude
of ripple movement depend on parameters to characterize the
airflow in the thermal boundary layer ahead of the ice surface,
the wavelengths of ripples on icicles in the presence of natural
convection airflow are almost the same as those in the absence
of airflow.

Even if we take into account the natural convection airflow,
as long as the flow of water film is driven by gravity only, the

velocity profile in the water film remains 171* =2y — D),

which is derived from the no-slip and the free shear stress
boundary conditions at the ice-water interface and water-air
surface, respectively. If an aerodynamic force acts on the
water-air surface, the boundary conditions (12) and (13) must

be modified. As a result, the unperturbed profile U, ;+ changes
from the above half-parabolic

Upe =@y =y =7, /(Fhitg 1) ) ,
7,=f,0U,/dy ly_j, is the unperturbed part of shear stress

form to
where

applied at the water-air surface due to the airflow U, «» M, and
M, being the viscosity of water and air, respectively.
Therefore, U 1+» Re; and Pe; in (36)-(40) are all modified.
In the absence of airflow, the wavelength was approximately
determined from the formula: A = 27(a’hyPe, /3)"*. If shear

stress due to airflow is exerted on the water-air surface, the
wavelength should be influenced by the airflow.

Based on these considerations, we have to develop the
theoretical framework and numerical method to deal with ice
and snow accretion on transmission line cables or other
equipment under wet conditions, in which air flow, impinging
water droplets motion and a supercooled water film motion
driven by gravitational and aerodynamic forces, surface
tension, and heat conduction through the ice and snow into the
object of cylindrical or arbitrary shape must be taken into
account simultaneously. Such more complicated situations and
the resulting morphological instability of the ice-water
interface are under study.
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