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Abstract— Icing on overhead transmission lines is a great threat to the operation security of power systems. In China, 

since the 2008 snow and ice storm which leaded to 1.52 billion U.S dollar losses, icing monitoring technology research 

became a hot point. Fiber optic sensor, because of its obvious advantages of no electromagnetic interference, safety and no 

power supply, is a very active in overhead transmission line icing monitoring field. In this paper, a novel iteration algorithm 

is brought out to solve the ice thickness calculation problem with the fiber Gragg grating (FBG) sensors’ measurement stress 

and temperature data. The mechanical model of overhead transmission lines is presented firstly and then the iteration 

algorithm is given in detail. A simulation test proves the effectiveness of the algorithm.  

Index Terms—Icing Monitoring;  Fiber Bragg Grating;  Transmission Line;  Iteration algorithm. 

I. Introduction 

CING on the overhead transmission lines may lead to severe accidents, such as mechanical overload of 
conductor, tower failure, insulator string’s icing & flashover, conductor galloping, etc. Anyone of these 

accidents is the vast potential threat to the security operation of the power system. For example, from January to 
February in 2008, snow and ice storms attacked the southern of China. Thousands kilometers of transmission lines 
were iced. In some segments, the thickness of the ice coating was up to 80~100mm, which obviously exceeded the 
design value. Some provincial grid were destroyed because of the 500kV transmission line trips. The whole direct 
economic loss was reached 1.52 billion U.S dollar in this disaster [1]. But with continuous increasing power demand to 
support the Chinese economic development, more and more high voltage transmission lines have to pass through the 
areas with atrocious weather conditions. Therefore, the need to secure the transmission grid motivates the research 
concerned with icing monitoring and de-icing technology in China. 

I 

  Until now, there are four kinds of transmission line icing monitoring method [2-4]. The earliest method was the use 
of icing observation station, which was used 50 or 60 years ago to monitor the conductor icing manually. This method 
can acquire the first-hand icing information but with the cost of high expense, which limits its spread. Photograph or 
video method which developed in these ten years 
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also monitors the lines icing situation directly. But in the application process, the camera lens maybe 
covers with the ice or dust. This brings out a great difficulty to distinguish the icing on the transmission 
lines. The third method, which measures the force upon the insulator string through the weight sensors, 
is widely used all over the world. And the fourth method, just like the third one but with more intuition, 
measures the strain of the transmission lines directly via the strain sensors. Whether the strain sensor or 
the weight sensor, they can be classified into two kinds: traditional electric quantity sensor, and 
fiber-optic sensor. Compared with the widely used electric quantity sensor, fiber-optic sensor has some 
attractive advantages, such as long distance monitoring due to low transmission loss, immunity to the 
electromagnetism disturbance. In these ten years, the fiber-optic sensor utilization in monitoring the 
power facilities, such as the temperature of 400kV power transmission lines[5], the aeolian vibrations 
of the 60kV power lines[6], and the icing on the transmission lines[7] are developed very quickly. The 
basic principle and fixing method of Fiber Bragg Grating (FBG) sensor, and experimental results are 
described in detail in the previous research [7-10]. In this work, we propose a novel iteration algorithm 
to solve the icing thickness calculation problem. We first introduce the mechanical model of the iced 
transmission lines, and then present the iterative algorithm. And in the last part of this paper, we bring 
out the experimental results to investigate the effectiveness of the iteration method. 

II. Mechanical Model of the Overheard Transmission Lines 

 An overhead transmission lines can be described mathematically by the well-known parabolic 
formula [11]: 
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where xσ is the axial stress at the horizontal position x of the transmission lines , 0σ is the 

horizontal stress on the lowest position, β is the angle of the height difference, is the span length, 

and

l

r is the conductor mass-length-area ratio (if icing, the ice mass also included). Fig. 1 shows 
the mechanical model of overhead transmission line. 
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Fig. 1 Transmission line mechanical analysis 
  Then the static strain of the conductor can be found from: 

 ),,(]
2

)2(
cos8

)2(
cos

[1
0

0

22
0 xrftgxlrxlr

EAEA
x

x σβ
βσβ

σσε =
−

−
−

+==  (2) 

where is the product of the elastic modulus of the conductor and its cross-sectional area. In the 
Eq. 2, after the strain sensor is fixed on the conductor, the variable

EA
x is a known number. So the 

strain xε is the function of r and 0σ . When the ice mass on the transmission lines changed, the 

r  value and the stress of the conductor are modified accordingly. The FBG sensor wavelength is 
shifted to reflect this change. Based on this phenomenon, we can develop the FBG icing 
monitoring apparatus.  

Obviously, the power conductor should be fixed firstly and therefore it brings out the possibility 
to bind the FBG strain sensors on itself. So, before the FBG strain sensors begin to work, there 

already lies strain acting on the conductor. FBG strain sensor’s measurement, denoted by xεΔ , is 

the stress increment and it can be induced by not only the environment loads but also the 
temperature variety.  In order to distinguish from the influence of the temperature, the icing 
monitoring system should measure the conductor temperature near the strain sensor. This also can 
be realized through the FBG temperature sensor. Eq. 3 describes the strain increment induced by 
the temperature: 

 )( 0ttatx −=Δε  (3) 

where is thermal expansion coefficient of the conductor, is the conductor current temperature, 

and is the initial temperature of the transmission line at that time when it was fixed on the 

insulator. Therefore the strain increment generated by the ice mass can be measured by the FBG 
strain sensor and temperature sensor, and can be denoted as following: 
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TxεΔ is the value measured by the FBG strain sensor and reflects the mechanical status on the 

transmission lines. 

III. Iteration Algorithm to Calculate Ice Mass 

  In the Eq. 2, we find that there lies two variables r , 0σ  and we have only one measured value 

TxεΔ . So, we present an iteration algorithm to calculate the ice mass using the following steps: 

Step 1) Calculate the length and the average stress of the conductor without ice using 
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where, the means of ,l β , 0σ is just the same as Eq. 1, is the height difference between the two 

ends. And the initial values of 

h

r , 0σ are saved as 'r , . '
0σ

  Step 2) The ice thickness and the lowest position horizontal stress b 0σ are assumed. For the 

first iteration, is equal to zero, and b 0σ is the initial value at the time when the conductor was 

fixed on the insulator. 
Step 3) Calculate the new conductor mass-length ration r : 
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  where,  
m  the conductor mass per unit length; 

g  gravity, ; 29.8m/s

iceρ the density of the ice, ; 3-3 kg/cm100.9×

D  the conductor diameter; 
A  the conductor cross-sectional area 

Step 4) The elongated length and the average stress of the conductor with ice are calculated 
using 
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Step5) Based the 2avσ  value, calculate the icing conductor length again using the transmission 

line state equation: 
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Step 6) Calculate the difference between  and . If the absolute value of the conductor 

length difference is less than a specific value

'
2L 2L

1Δ , for example, m001.01 =Δ , go to step 7. Else 

calculate the horizontal stress 0σ of the lowest position using following formula, then go to step 4: 
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Step 7) Then the strain increment with the ice thickness can be calculated using the 

formula 12.  
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Step 8) Compare this calculated value  with the actual measured value'
TXεΔ TxεΔ . If the 

absolute difference of these two strains is less than a specific value 2Δ , then output the ice 

thicknessb . Else, the ice thickness is increased or decreased and the steps are continued until 

absolute difference is less than . 

b

2Δ

IV. Simulation Experiment 

  Here, a simulation experiment is designed to investigate the effectiveness of the algorithm. 
Some parameters and initial state are listed as following: E=65000N/mm2, A=425.24mm2, 

=1000m, D=26.82mm, h=0, r=0.03111, l 0σ  =58.29 N/mm2, , =15℃. Cma o/105.20 6−×= 0t



 

If the FBG strain & temperature sensors are placed at the position 10=x m, the strain and 
temperature value at this point are 55.5℃ and 1460με . At the iteration beginning, we assume 

that the ice thickness b=0 and 0σ is the same as the initiate states. After 147 iteration calculation, 

the value of the ice thickness and the horizontal stress are obtained. They are 10.08 mm and 

126.7N/mm2 respectively. Fig. 2 shows the change of the calculation b and 0σ  in the calculation 

process. 

 
Fig. 2 Ice thickness and horizontal stress changed with iteration process 

V. Conclusion and Future Works 

Although the icing monitoring technology are developed for a very long time, but in the 
application case, they meet the great challenge from the acute environment conditions, continuous 
power supply, high reliability and low maintenance cost for the long-time work. The fiber optic 
technology shows its potential in the transmission lines icing monitoring.  

In this paper, we first present the mechanical model of the transmission lines and then bring out a 
novel iteration algorithm for the icing thickness calculation based on the strain and temperature 
data which obtained by the FBG sensors. The simulation experiment proves its validity. Future 
work should be focused on data processing of FBG signal to deal with the more complex situation, 
such as the measurement noise and the effect of the wind.  
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