
A PREDICTIVE INDICATOR OF ICING DAMAGE RISK 

Petr Musilek1*, Afsaneh Esteki1, Edward Lozowski2 
1 Dept. of Electrical and Computer Engineering, 2 Dept. of Earth and Atmospheric Sciences  

University of Alberta Edmonton, AB, T6G 2V4, Canada 
*Email: Petr.Musilek@ualberta.ca 

 

Abstract: The ability to predict severe ice storm events is an 
essential step to prevent or mitigate power grid outages caused by 
extreme wind and ice loads. We have shown previously that an 
Ice Accretion Forecasting System (IAFS) can predict severe ice 
storms several days in advance. However, identifying the storms’ 
maximum intensities and localizing their epicentres remain 
challenges to be addressed. In this paper, we describe an icing risk 
indicator based on the observation that predicted freezing rain 
fields differ, when compared across time and space. This leads to 
a concept similar to pseudo-ensembles used for quantitative 
precipitation forecasts. In addition to precipitation, this new 
indicator must consider temperature, wind, and fraction of frozen 
precipitation. The final icing risk indicator is developed using a 
combination of icing forecasts shifted in time and space, weighted 
according to the relative distance from the area and time of 
interest. When combined with power line design parameters, it 
can provide a probabilistic forecast of areas likely to be affected 
by ice storms. Performance of the new indicator is illustrated 
using a case study of an icing event that caused widespread 
damage to the power distribution infrastructure. 

1. INTRODUCTION 

Prediction of icing events caused by freezing rain and their 
severity could help electric power companies and 
communities at risk to get prepared and take appropriate 
preventative measures. Hence, a system that can forecast 
ice accretion could decrease the costs associated with icing 
events. This motivation led to the development of ice 
accretion forecasting systems (IAFS) capable to predict 
approaching ice storms with lead time of several days [1]. 
However, identifying the storms’ maximum intensities, 
localizing their epicentres, and determination of their exact 
timing remain challenges to be addressed. In this paper, we 
describe a predictive icing risk indicator that uses the 
concept of spatiotemporal neighbourhood to minimize the 
impact of spatial and temporal shifts of weather forecasts. 
It is developed using a combination of icing forecasts 
shifted in time and space, weighted according to the 
relative distance from the area and time of interest. 

2. RESULTS AND DISCUSSION 

The proposed Predictor of Icing Damage Risk (PIDR) 
expands the methodology of probabilistic precipitation 
forecasts [3]. In addition to precipitation, there are other 
conditions that determine whether, and how much, 
precipitation will accrete in the form of ice on structures. 
According to a simple model [2] commonly used in ice 
accretion studies [1], three variables have the greatest 
influence on potential ice accretion damage: precipitation 
rate and duration, and average wind speed. In addition, to 
diagnose occurrence and type of precipitation, averages of 
surface temperature and fraction of frozen precipitation are 
used as the inputs of the predictor. 

Based on the nature of the accretion process, 
appropriate thresholds are selected for all variables. They 
signify values of the variables that, if exceeded, could lead 
to dangerous ice accretions. Individual grid points of a 
weather forecast are compared to these thresholds for 
exceedance. Ratios ������� �����	⁄ N������ N����	⁄  are then 
arranged into tables of probabilities that express likelihood 
that given variables will exceed their specified thresholds. 
In the final step, the tables are element-wise multiplied to 
provide the overall risk of icing damage on electric power 
transmission or distribution infrastructure.  

PIDR was tested using a severe ice storm that took 
place in Newfoundland, Canada, in March 2010. The 
slowly moving storm brought large amounts of rain and 
freezing rain to the exposed northeastern coast of the 
island. The spatial distribution of risk, shown in Fig. 1, 
corresponds well to the locations of actual damage, and to 
the results of a detailed icing study [1].  

   

Figure 1: Spatial distribution of PIDR over Avalon peninsula, 
Newfoundland, on March 5, 2010, 21:00 UTC 

3. CONCLUSIONS 

The proposed predictor of icing damage risk can provide an 
early warning of approaching ice storms with a lead time of 
several days. Because it combines spatio-temporal and 
probabilistic approaches, this new predictor can identify 
areas of risk that may not be identified using a traditional, 
deterministic, single-point approach.  
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Abstract— The ability to predict severe ice storm events is 

an essential step to prevent or mitigate power grid outages 

caused by extreme wind and ice loads. We have shown 

previously that an Ice Accretion Forecasting System (IAFS) 

can predict severe ice storms up to three days in advance. 

The IAFS combines a numerical weather prediction model 

with an intelligent post-processor and a physical model of 

the ice accretion process. It can provide an early warning of 

an approaching ice storm. However, identifying the storms’ 

maximum intensities and localizing their epicentres remain 

challenges to be addressed. In this paper, we describe an 

icing risk indicator based on the observation that predicted 

freezing rain fields differ, when compared across time and 

space. This leads to a concept similar to pseudo-ensembles 

used for quantitative precipitation forecasts. In addition to 

precipitation, this new indicator must consider 

temperature, wind, and fraction of frozen precipitation. All 

the components are distributed in space and evolve in time 

as the forecasts are updated. The final icing risk indicator is 

developed using a combination of time-shifted icing 

forecasts, weighted according to the forecast horizon and 

the relative distance from the area of interest. When 

combined with power line design parameters, it can provide 

a probabilistic forecast of areas likely to be affected by ice 

storms. Using the new indicator, the risk of icing damage to 

structures can be forecast up several days in advance. At 

the same time, this risk forecast can cover areas that may 

not be identified using a traditional deterministic approach. 

Performance of the new indicator is illustrated using a case 

study of an icing event that caused widespread damage to 

the power distribution infrastructure. 

Keywords- Icing, Risk, Probabilistic Forecast, 

Transmission Infrastructure, Overhead Lines 

I.  INTRODUCTION 

Meteorological conditions have a significant impact on 
the operability of power transmission lines, the integrity 
of their infrastructure, and the characteristics of 
transmission networks [3]. Weather phenomena that can 
cause transmission line failures and outages include 
extreme winds, lightning and ice loads. A study by the 
International Council on Large Electric Systems (CIGRE) 
concluded that ice accretion on power lines, winds or a 
combination of both, caused 87% of the total damage 
costs over 5 years starting from 1991 [8]. Although icing 
events are not common, they cost an annual average of 
$313,000,000 in the U.S. alone. The extreme icing storm 
that hit Canada in January 1998 caused damage of $1.44 

billion - the largest insured loss in Canadian history. 
Millions of people were left without power, and there 
were 25 fatalities [9]. As another example, in December 
2002 an ice storm hitting the eastern United States left 
more than 65% of Duke Power’s 2.2 million customers 
without power for days. The post-storm recovery required 
12,500 support personnel [4].  

The prediction of icing events and their severity could 
help the electric power companies and communities at 
risk to prepared and take appropriate preventative 
measures. Site specific icing forecasts could also help 
utilities to better plan for recovery through appropriate 
staffing and dispatch of repair crews [4]. Hence, a system 
that can forecast ice accretion could decrease the costs 
associated with icing events. As a result, there is an 
increasing interest in the development of an Ice Accretion 
Forecasting Systems (IAFS).  

We have shown previously that an IAFS can predict 
severe freezing rain ice storms several days in advance 
[6]. The IAFS combines a numerical weather prediction 
model, an intelligent post-processor and a physical model 
of the ice accretion process. It can provide an early 
warning of an approaching ice storm. However, 
identifying the storms’ maximum intensities and 
localizing their epicentres remain challenges to be 
addressed. In this paper, we describe an icing risk 
indicator based on the observation that predicted freezing 
rain fields differ, when compared across time and space. 
The final, probabilistic Predictor of Icing Damage Risk 
(PIDR) is developed using a combination of deterministic, 
time-shifted icing forecasts, weighted according to the 
spatial and temporal distance from the area of interest. 

This paper has five main sections. Section II provides 
background information about the problem, including ice 
accretion modeling, numerical weather prediction, and 
quantitative precipitation forecasting. The proposed icing 
risk indicator is described in detail in Section III, and 
applied to a recent ice storm event in section IV. Section 
V provides conclusions and suggestions for future work. 

II. BACKGROUND 

A. Modeling of Ice Accretion 

Many models of ice accretion have been developed 
over the last sixty years [11]. They generally fall into two 
major categories: physical models and empirical models 
[12]. A physical model describes icing based on the 
associated physical processes of ice accretion. Such This work has been supported by the Natural Sciences and Engineering 
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models usually rely on parameters that are difficult to 
measure, e.g. liquid water content and droplet size 
distribution [12]. Empirical models describe the accretion 
process based on observed weather and related 
experimental data [7], [10]. 

Most icing models estimate the amount of ice based 
on weather observations, under the assumption that 
freezing rain is actually falling [7]. Thus, in order to 
forecast the ice load on power lines, the occurrence of 
freezing rain must first be predicted. Then, once freezing 
precipitation has been forecast, an icing model can be 
engaged to forecast the ice accretion load [4], [16]. 

B. Numerical Weather Prediction 

In order to implement an effective icing risk indicator, 
a Numerical Weather Prediction (NWP) system is used 
first, to forecast weather conditions in the area of interest. 
NWP models have evolved over the last half-century to 
become the state-of-the-art methodology for accurate, 
short-term weather forecasting [5], [13]. NWP systems 
generate the forecasts using gridded observations of the 
atmosphere as initial and boundary conditions. Forward 
time extrapolation is accomplished by solving spectral, 
finite element or finite difference forms of the 
mathematical equations that describe the thermodyna-
mics and fluid mechanics of the atmosphere. Through a 
series of repeated calculations of the next state of the 
atmosphere, a forecast can be made, for a period of 
several days. 

The Advanced Weather Research and Forecasting 
(WRF) system [19] is a modern, state-of-the-art NWP 
model. Its Advanced Research WRF (ARW) dynamic 
solver core, used for the simulations in this study, uses an 
Eulerian solver for the fully compressible, non-
hydrostatic primitive equations. Because it is most often 
used as a regional NWP model, it must be first initialized 
with boundary conditions obtained from either a global 
or continental-scale model [18], before a forecast can be 
made. 

C. Probabilistic Quantitative Precipitation Forecast 

A Quantitative Precipitation Forecast (QPF) is the 
expected amount of precipitation accumulated over a 
specified time period in given area [1]. Theis et al. [20] 
described a simple procedure to obtain probabilistic 
precipitation forecasts from a deterministic model. The 
procedure is based on the hypothesis that the spatio-
temporal neighborhood of a given point and time can be 
used to derive a probabilistic characterization of the 
precipitation forecast for that time and location. The 
authors introduce the concept of spatio-temporal 
neighborhood that is used in post-processing NWP 
forecasts. The post-processing procedure yields a 
pseudo-ensemble of deterministic precipitation forecasts 
that can be transformed into a probabilistic forecast. 

In the study described in this paper, we extend the 
methodology of pseudo-ensembles to meteorological 
variables relevant to ice accretion, namely, precipitation 
type, air temperature and wind speed.  

III. PREDICTOR OF ICING DAMAGE RISK 

The proposed predictor (PIDR) expands the methodology 
of probabilistic precipitation forecasts [20]. In addition to 
precipitation, there are other conditions that determine 
whether, and how much, precipitation will accrete in the 
form of ice on structures. In the accretion model of Jones 
[7], often used in ice accretion studies [4], [6], [16], three 
variables have the greatest influence on the ice accretion 
process: precipitation rate and duration (or equivalently, 
total accumulated freezing precipitation), and wind speed. 
Two additional, important variables must be taken into 
account, although they do not appear explicitly in the 
simple model [7], because it implicitly assumes the 
occurrence of freezing rain. They are surface temperature 
and precipitation type (rain, freezing rain, freezing mix, 
ice pellets, graupel, snow).  

Similarly to QPF described in [20], one must begin by 
determining appropriate variable thresholds that indicate 
the critical values that may lead to icing damage, if 
exceeded. Based on the nature of ice accretion and the 
damage it inflicts on power systems, the following 
thresholds have been selected for initial implementation 
of the predictor: 

• Surface air Temperature � < 1°C, 
• Accumulated precipitation ∑� > 0.8 ∙ ���

���, 

• Fraction of frozen precipitation �� < 0.465, 

• Wind speed � > 10 ms-1, 
where values with an overbar (⋯ ) are averaged over the 
duration of the precipitation event. 

The temperature threshold is derived from the 
necessary condition for ice accretion, namely that the 
temperature must be below the freezing point. The actual 
value of the threshold is adjusted to +1°C to account for a 
possible warm bias of the NWP model [15]. The threshold 
for accumulated precipitation is set equal to 80% of the 
ice thickness for which the structures located in the region 
of interest were designed. This follows from the fact that, 
for precipitation rates that lead to potentially dangerous 
ice loads and wind speeds in excess of 10 ms-1, the rate of 
accretion exceeds the precipitation rate by a small margin 
of about 25% [14]. The threshold for the fraction of 
frozen precipitation is set according to the Ramer 
algorithm [17] modified to work with the NWP model. 
In [16], accretion effectiveness linearly decreases between 
SR values of 0 and 0.93. The value used as the threshold 
is a simple average of these two boundaries. The 
threshold for wind speed was selected to represent a 
typical value that may lead to dangerous accretions when 
a substantial amount of freezing precipitation falls over a 
prolonged period of time, i.e. 10 ms-1. In this initial study, 
all threshold values were selected subjectively, based on 
experience. In future work, these values should be 
optimized to reflect actual meteorological conditions and 
ice accretions, observed in a range of icing events. 

A. Neighborhoods 

After the thresholds have been determined, individual 
grid points of the NWP model output are compared to 



their respective thresholds for exceedance. In addition to 
the points themselves, their spatiotemporal neighborhoods 
are also included in the analysis. The spatial 
neighborhood used for this initial study is shown in Fig. 1. 
For each grid point, the number of forecasts within the 
neighborhood which are greater (or less) than the 
corresponding threshold, Nexceed, is divided by the total 
number of grid points within the neighborhood, Ntotal. The 
weights of points within a neighborhood decrease with 
increasing distance from the central grid point. The 
weighs are based on a spatial Gaussian distribution, and 
normalized so that the ratio directly expresses the 
probability of exceedance of the threshold. 

 

Figure 1.  Spatial neighborhood; the grid represents points where 
forecasts are available; shading inside the neighborhood represents 

relative weights of grid points derived from a 2D Gaussian distribution. 

A temporal neighborhood is also defined, to take into 
account forecasts before and after the specific time for 
which PIDR is determined, i.e. !"#$, !"#&, !" , !"'&, !"'$. The 
first meteorological variable to consider is precipitation. 
This is quite straightforward, because WRF provides 
cumulative amount of precipitation as a direct output 
variable, RAINNC. However, because each simulation 
starts from RAINNC=0, forecasts with shorter lead times 
miss earlier precipitation, and hence their RAINNC has a 
negative bias. For this reason, precipitation forecasts with 
a later time horizon are initialized with values of 
RAINNC by their predecessors, at the time of their start. 
This procedure is shown in Fig.2. 

 
Figure 2.  Initialization of RAINNC from preceeding forecasts 

The next variable is temperature. WRF outputs a value 
T2, which is the model temperature at a height of 2 m 

above the surface. However, the use of instantaneous 
values would be meaningless: ice accretion is a slow 
process that takes hours or days to accumulate ice of mass 
that poses danger to structures. Therefore, Instead of 
simply taking the value of �(!") , an average over the 
duration of the precipitation event is considered 

 � =
∑ +(,-./)
/
-01

2'&
, (1) 

where H is the duration of the precipitation event. 
Fraction of frozen precipitation and wind speed are 
treated in a similar way, i.e. 

 �� =
∑ 34(,-./)
/
-01

2'&
 and � =

∑ 5(,-./)
/
-01

2'&
. (2) 

Ratios ������� �����	⁄  are then arranged to form 
tables of probabilities. Each cell, corresponding to a 
particular location on the forecast grid, expresses the 
likelihood that a given variable will exceed the specified 
threshold. Assuming statistical independence of the four 
variables, individual elements of the four tables are 
multiplied. This provides a table of the overall risks of 
icing damage on electric power transmission or 
distribution infrastructure. 

IV. APPLICATION 

To illustrate the operation of PIDR, it was applied to a 
severe ice storm that took place in Newfoundland, 
Canada, in March 2010. This ice storm has been recently 
simulated and analyzed [6], providing an ideal case to 
prove the concept of PIDR. The storm hit southeastern 
Newfoundland on March 5, and brought rain and freezing 
rain to the exposed northeastern coast of the island. The 
slowly moving storm produced rain for about two days. A 
detailed description of the storm can be found in [6]. The 
storm was simulated using the WRF model with three 
nested domains. Only the intermediate domain, with a 
grid size of ∆x=∆y=3.6 km and dimensions of 64×79 grid 
points, was used for this study. In order to reproduce the 
conditions of a real forecast, initial and boundary 
conditions were obtained from the North American Model 
(NAM) data products, which are based on global model 
forecasts.  

The simulated forecast with horizon of 24 hours was 
used for this illustration. The value of precipitation 
threshold was set to 15.2mm. This value is 80% of the 
severe icing category threshold, assigned to northeastern 
Newfoundland by the overhead systems design 
standard [2]. This procedure yielded the four probability 
tables visualized in Fig. 3. The table of ΣP>15.2mm in 
Fig. 3a, showed significant potential for damaging ice 
accretions over the entire northern half of the island. This 
was confirmed by the average temperatures over the 
duration of the precipitation event, cf. Fig 3b. However, 
only the eastern part of the precipitation field had 
predominantly liquid precipitation, as shown in Fig. 3c. 
Finally, see Fig. 3d, the average wind speed during the 
precipitation event was sufficient to produce dangerous 



accretions. It should be noted that PIDR currently only 
considers ice loads, not combined wind-and-ice loads. 

   
 a) b) 

   
 c) d) 

   
 e) f) 

Figure 3.  Probability of a) ΣP>15.2mm, b) � < 1°C, c) �� < 0.465, 

d) � > 10 ms-1, e) resulting PIDR; f) map of areas affected by the ice 
storm of March 4-5, 2011 [for scale cf. Fig. 1] 

The final risk grid, shown in Figure 3e, is obtained 
using the element-wise product of all four tables. 
Comparison with a map of the areas most affected by the 
ice storm, shown in Fig. 3f, indicates a good match.  

V. CONCLUSIONS 

This paper introduced the concept of a predictive 
indicator of icing damage risk (PIDR). This predictor 
examines the spatio-temporal neighborhood of each point 
forecast, using thresholds to identify meteorological 
conditions that could lead to severe ice accretions on 
power transmission and distribution infrastructure. The 
concept was tested using a severe ice storm that took 
place in Newfoundland, Canada, in March 2010. 

Future work will concentrate on examining the 
assumption of statistical independence of meteorological 
variables, and possible modification of the aggregation 
procedure. Further improvements will involve optimi-

zation of the size and resolution of the neighborhood, and 
tuning of the thresholds using data collected from other 
ice storms. 
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