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Abstract: Large oscillations of an elastically mounted iced 
cylinder in a uniform incident wind flow are studied with a three- 
degree-of-freedom model (with horizontal, vertical and torsional 
motions), using two-dimensional fluid-structure interaction (FSI) 
analysis. A Computational Fluid Dynamics (CFD) approach is 
adopted in the analysis, based on the Unsteady Reynolds-
Averaged Navier-Stokes (URANS) equations and the Spalart-
Allmaras one-equation turbulence model. These algorithms are 
implemented in a finite element code, yielding the time history of 
the detailed flow field around and in the wake of the iced cylinder. 
Vortex shedding from the iced cylinder is numerically 
investigated for moderate Reynolds numbers, and a 
Computational Structural Dynamics (CSD) module is used to 
determine the dynamic response of the cylinder based on the fluid 
flow loading and structural support characteristics. 

1. INTRODUCTION 

Wind-induced motions of iced conductors are of great 
interest. In particular, predicting conductor galloping has 
been a difficult task ever since overhead lines have been 
erected at the beginning of the last century. The majority of 
current predictive methods rely on field tests conducted on 
experimental line sections, wind tunnel experiments, or 
quasi-steady computations in which the aerodynamic lift 
and drag coefficients needed to compute the loading over 
conductors are obtained in wind tunnel tests [1]. 
Experimental set-ups are expensive and have difficulty 
replicating icing conditions at full scale, while quasi-steady 
computations require assumptions that compromise their 
applicability in the case of bundled leeward cables placed 
in the wake of other cables. In this work, in-plane cross-
sectional oscillations of an elastically mounted iced-
conductor are studied with a three-degree-of-freedom 
model in the horizontal, vertical and torsional directions 
using two-dimensional fluid-structure interaction (FSI) 
analysis. A CFD approach based URANS equations, using 
the Spalart-Allmaras turbulence model, is implemented via 
the finite element code, FENSAP-ICE [2].  

2. RESULTS AND DISCUSSION 

The maximum iced conductor displacements and 
fundamental frequencies of the motion in vertical, 
horizontal and torsional directions, vortex shedding, and 
galloping ellipses are plotted and discussed for different 
Reynolds numbers. In Figs. 1-2, typical results for vertical 
displacement, loading, and flow field are presented. 

3. CONCLUSION 

In this study, as a proof of concept, a numerical framework 
for studying cable-galloping instabilities as a fluid-
structure interaction event is presented, and the results are 
validated against experimental results obtained by others 
and with several test cases.  This framework can be used to 
numerically study iced conductors with arbitrary structural 
parameters and free stream conditions. Such a 
computational framework will, hopefully, provide a more 
detailed simulation tool to better understand the physics of 
cable galloping events and their effective mitigation. 

 
Figure 1: Vertical displacement and force coefficient versus non-

dimensional time, Re 49414 

 
Figure 2: Flow field details and velocity magnitude contour at tU∞/ =9396, 

Re 49414 
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I.  INTRODUCTION 
Wind-induced motions of iced conductors are of great 

interest. In particular, predicting conductor galloping has 
been a difficult task ever since overhead lines have been 
erected at the beginning of the last century [1]. The majority 
of current predictive methods rely on field tests conducted 
on experimental line sections, wind tunnel experiments, or 
quasi-steady computations in which the aerodynamic lift 
and drag coefficients needed to compute the loading over 
conductors are obtained in wind tunnel tests [2]. 
Experimental set-ups are expensive and have difficulty 
replicating icing conditions at full scale, while quasi-steady 
computations require assumptions that compromise their 
applicability in the case of bundled leeward cables placed in 
the wake of other cables [2-4]. In this work, in-plane cross-
sectional oscillations of an elastically mounted iced-
conductor are studied with a three-degree-of-freedom model 
in the horizontal, vertical and torsional directions using two-
dimensional fluid-structure interaction (FSI) analysis. A 
CFD approach based URANS equations, using the Spalart-
Allmaras turbulence model, is implemented via the finite 
element code, FENSAP-ICE [5].  

 

II. GOVERNING EQUATIONS 

A. Fluid Dynamics 
In this study, the URANS equations are solved using 

FENSAP-ICE, a second order accurate 3D finite element 
compressible Navier-Stokes solver [5-7]. The one-equation 
Spalart-Allmaras [8] turbulence model is applied to estimate 
the Reynolds stresses. To handle the moving nodes on the 
fluid/structure boundary and determine the new positions of 
internal nodes in the fluid domain, the Arbitrary Lagrangian 
Eulerian (ALE) formulation of Navier-Stokes equations is 
applied [9]. The non-dimensional URANS equations used in 
FENSAP-ICE can be expressed as follows. 
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where ρ is density, t time,  ui  the  ith component of velocity, 
iu  mesh velocity, p pressure, τ stress tensor, Re∞ free 

stream Reynolds number, and  i ju uρ the Reynolds stress 
tensor.  

B. Rigid Body Dynamics 
In the FSI analysis, the iced conductor is treated as a 

rigid body mounted on flexible supports. In small 
kinematics, its cross-sectional motion along three degrees-
of-freedom in vertical, horizontal, and torsional directions 
can be described by the following linear system of equations 
assuming viscous damping: 

{ } { } { } {[ ] [ ] [ ] }M q C q K q F+ + =&& &      (3) 

where { } ( ), , Tq x y θ= is the displacement vector, [M] the 
mass/inertia matrix, [C] the structural viscous damping 
matrix, [K] the stiffness matrix, and {F} the fluid loading 
vector resulting from fluid surface loads. Note that [C] and 
[K] represent the characteristics of the supports only.  



 

C. Coupling Algorithm 
A general coupling algorithm with capability of handling 

conductors in 3D is designed in view of future full 3D 
studies. This algorithm includes three main modules (Fig. 1): 
the fluid solver, the solid solver, and the load/motion 
transfer operator that relays relevant analysis parameters 
between the two solution domains.  Coupling starts with an 
initial flow field solution that provides the surface fluid 
tractions along the fluid mesh interface with the solid. Then, 
through the conservative load transfer module [10], surface 
tractions are integrated to yield the resultant nodal forces 
and moments applied on the solid mesh interface. The 
solution of Eq. (3) provides the cross-sectional conductor 
displacements, velocities and accelerations at every time 
step. In this study the direct integration operator used by the 
solid solver is the unconditionally stable Beta Newmark 
algorithm [11-13]. After each time increment, the solid 
displacements are imposed by compatibility to the nodes of 
the fluid mesh defined along the interface of the fluid 
domain with the solid, using the motion transfer module 
[10]. Then, the fluid solver handles this interface motion and 
computes the fluid mesh motion in the entire domain and 
solves the flow field. This loop marches in time until the 
total analysis duration is achieved.   

 
Figure 1: Global coupling and FSI (fluid-structure interaction) framework 

As a starting point for the computations, the initial flow 
solution around the body is required; however, at the first 
time step, there is no converged CFD solution available yet. 
One common approach in the literature for fluid-structure 
interaction problems to circumvent this problem of implicit 
initial conditions is to let the flow around the body establish 
completely until shedding vortices reach their unsteady limit 
cycle. From that point forth, the body starts to move freely 
[14]. In this study, initialization has been done differently. 
First, a few time iterations have been performed in order to 
get a time-accurate flow established around the conductor 
without reaching to the limit cycle, and then the conductor is 
freed to move. Since the source of vortex shedding behind 
the bluff body is flow instabilities, this method helps to 
reach the limit cycle sooner and models the physical 
problem more accurately. Therefore, in all test cases, the 
conductor starts to move from rest, i.e. 

{ } { } { } { }00 and 0t tq q q
=

= &
0= = .                 (4) 

III. MODEL AND PARAMETERS 
 Fig. 2 illustrates the geometry of the model and the flow 

boundary conditions. The predefined ice profile is M. 

Tunstall’s shape #1 [15], with maximum thickness of 132% 
of the bare cable radius, adapted over a conductor cross 
section with 32.5-mm diameter. The initial angle of attack 
of the incident wind on the iced conductor is 30 degrees, 
which also corresponds to the initial ice accretion angle in 
this problem. The non-dimensional time step, U∞Δt/d, is 
selected as 0.05 for all Reynolds numbers, on the basis of 
satisfactory numerical performance. In Fig. 2, the fluid mesh 
shown is defined by 30,000 nodes and the fluid domain 
dimensions are established according to the parameter D, 
the diameter of the bare conductor. The fluid mesh is 
structured as an O-grid around the body and an H-grid 
elsewhere. The closest nodes to the body are placed within 
y+<1, and the next few nodes are placed within y+<5, at all 
times and Reynolds numbers.   

Structural properties are taken from [16]. The natural 
frequencies (in Hz) of the solid bluff body on flexible 
supports are 0.995, 0.845, and 0.865 in the horizontal, 
vertical, and torsional directions, respectively. The mass per 
unit length is 3.25 kg/m, and based on available data and 
geometry, the mass moment of inertia per unit length is 
estimated as 0.0394 kg-m2/m (there is no explicit value for 
this parameter in [16]). The structural damping is set to 
0.08% of critical viscous damping for horizontal and 
vertical motion, and 0.3% for rotation.  

 
Figure 2: Model Dimensions, mesh (O-H), and Boundary Conditions 

IV. RESULTS AND DISCUSSION 

A. Validation 
The FENSAP flow solver has been extensively validated 

with different test cases [17]. In addition, results of the 
current computational framework have been validated for 
vortex-induced vibration of cylinders. Finally, for this study, 
the computational results are compared in Table 1 with 
those  available from wind tunnel experiments  reported in 
[18]. There is agreement between the numerical and wind 
tunnel results: The frequency is the same for the three 
directions of motion in each case, with a 3% 
underestimation from the computational model. There is 
more variability in the prediction of the amplitude of the 
translational oscillations, with a maximum difference of 
about 8%.  However, torsional amplitudes are different. As 



 

the response frequencies and other amplitudes are in good 
agreement, this large difference can probably be attributed 
to the value of the mass moment of inertia used in the model, 
which could only be estimated from the available data in 
[16].  

Table 1: Comparison of results with [18] 
Amplitude f0 (Hz) Test  U(m/s) Re 

AX/D Ay/D θ° X Y θ 
Current   9.7   24707 0.55 0.85 5.6 0.85 0.86 0.86
Ref. [18]   9.7   24707 0.51 0.91 15.2 0.89 0.89 0.89

f0 is the  frequency of the motion of the solid body, A max amplitude, X horizontal, Y vertical, and θ 
rotational. 

B. Results 
The main results discussed here are the maximum 

response in displacements of the iced conductor shape and 
the fundamental (lowest) frequencies of its motion in the 
vertical, horizontal and torsional directions for different 
Reynolds numbers. The incident flow conditions vary from 
wind speeds of 2.4 to 19.4 m/s, corresponding to Re values 
of 6000 to over 49400. Clearly, as expected, the iced 
conductor response motion is completely different than that 
of the cylindrical bare conductor. 

Table 2 summarizes the results obtained from the 
numerical simulations. It is seen that in the range of 
Reynolds numbers studied, the fundamental frequencies of 
the cable motion (f0) are close to the natural frequencies of 
the oscillator (fn), i.e. the frequency ratio, f*, is close to 
unity (see Table 2). However, this is not the case for the 
horizontal motion (X-direction) with Re of 18000 and 
24700, where the frequency ratio drops under 0.88, 
indicating that the forced motion has a longer period of 
oscillation. We are investigating whether these results have 
a physical basis or not. 

Except for these two Re cases, the amplitudes of 
conductor motion tend to increase monotonically with 
Reynolds number. The case of Re 18000 was found to be  
particular, while the results obtained for Re 24707 compare 
well with the other values of Re in terms of general trends in 
time history response, flow field and trajectory illustrated in 
Figs. 4 to 13. 

Table 2: Amplitudes and fundamental frequencies of conductor motion 
Amplitude f0 (Hz) f*=f0/fnRe AX/D Ay/D θ° X Y θ X Y θ 

6000 0.043 0.048   0.38 0.992 0.839 0.870 0.997 0.993 1.006
9000 0.084 0.105   0.84 1.000 0.848 0.865 1.005 1.004 1.000
12736 0.143 0.215   1.56 0.977 0.854 0.854 0.982 1.011 0.987
18000 0.288 1.806   7.54 0.875 0.849 0.875 0.879 1.005 1.012
24707 0.552 0.849   5.62 0.839 0.858 0.858 0.843 1.015 0.992
49414 3.903 3.577 23.52 0.992 0.824 0.810 0.997 0.975 0.936
 

In Table 3, the dominant (fundamental) frequencies of 
the equivalent loads are summarized. Unlike the conductor 
motion, this dominant frequency is the same in all three 
directions, since these loads are obtained from the fluid 
surface tractions. These frequencies are much higher (more 
than 10 to 70 times) than the resulting dominant frequency 
of the cable motion. Several time history results show 
beating phenomena, where high-frequency loading 
fluctuations are combined to lower frequency conductor 

motions (see Figs. 4 to 6 with 8 to 10). Finally, as expected, 
the dominant loading frequencies increase with Reynolds 
number and vary almost linearly with incident wind speed. 

Table 3: Fundamental frequencies of conductor loading  
f0 (Hz) Test # U(m/s) Re 

X Y θ 
1   2.4   6000 10 10 10 
2   3.5   9000 15 15 15 
3   5.0 12736 20 20 20 
4   7.1 18000 25 25 25 
5   9.7 24707 40 40 41 
6 19.4 49414 68 68 64 

 

In the following sections, detailed results for two 
Reynolds numbers, 9000 and 49414, are presented. Only the 
galloping ellipses are presented for the other test cases.  

1) Reynolds 9000 
Fig. 3 shows the detailed flow field and stream lines 

around the body at non-dimensional time (tU∞/d) of 6108 
for Re 9000. The flow is separated in a large part of the 
body and the location of the separation points oscillates 
because of the inherent flow instabilities behind the body. 
Alternating separation points develop an unsteady vortex 
street in the back of the body. Also, the pressure distribution 
around the body changes due to this instability in separation. 
This creates time-variant loading over the body that is 
sometimes large enough to induce noticeable displacements, 
known as vortex-induced vibrations.  

Figs. 4 to 6 show the time history of displacements and 
loading for the three degrees-of-freedom, X, Y and θ, 
respectively. It is seen from these figures that, although the 
loading is sustained (amplitude and frequency in all 
directions do not decrease in time), the horizontal and 
torsional motion amplitudes decrease with time, while only 
the vertical amplitude is sustained. As the structural 
damping included in the model is very small (0.08% viscous 
critical in each direction), the amplitude decay in the 
horizontal and torsional directions is mainly attributed to 
positive aerodynamic damping. Clearly, this effect is not as 
large in the vertical direction as seen in Fig. 5. 

 

 
Figure 3: Flow field details and velocity magnitude contour at tU∞/d=6108, 

Re 9000  



 

 
Figure 4: Horizontal displacement and force coefficient versus non-

dimensional time, Re 9000  

 
Figure 5: Vertical displacement and force coefficient versus non-

dimensional time, Re 9000  

 
Figure 6: Rotation and angular momentum coefficient versus non-

dimensional time, Re 9000 

2) Reynolds 49414 
The vortex street, structural response, and unsteady 

loading in Re 49414 are different than in the other test cases. 
Fig. 7 shows the flow field and streamlines around the body 
at tU∞/d = 9396. The frequency of vortex shedding in this 
case is higher.  

Figs. 8 to 10 show plots of displacements and loading 
versus non-dimensional time. After vortex shedding has 
developed, the amplitude of the horizontal displacement 
increases with time and a regular beating pattern is observed 
in Fig. 8. This beating is also present in the torsional 
response (Fig. 10), but the maximum amplitude of the 
rotational motion does not increase, and reaches a non-
variant value. Unlike these two directions, the vertical 
motion response (Fig. 9) does not show any beating and the 
maximum amplitude remains almost the same through time. 

 
Figure 7: Flow field details and velocity magnitude contour at tU∞/ =9396, 

Re 49414  

 
Figure 8: Horizontal displacement and force coefficient versus non-

dimensional time, Re 49414  

 
Figure 9: Vertical displacement and force coefficient versus non-

dimensional time, Re 49414  

 
Figure 10: Rotation and angular momentum coefficient versus non-

dimensional time, Re 49414  

 



 

3) Galloping Ellipses 
The trajectory of the centroid of the iced conductor in 

the x-y plane is referred to as the galloping ellipse. The size 
and shape of this trajectory are important in transmission 
line design.  Therefore, in this section, galloping ellipses are 
presented for all six test cases.  

Fig. 11 shows the galloping ellipses for Re 6000 and 
9000. At these Reynolds numbers, initially, the conductor 
motion starts with similar amplitudes in both the horizontal 
and vertical directions, making for an X-shaped trajectory. 
Then, after a sustained motion is established, the horizontal 
amplitude decreases, while the vertical amplitude is almost 
invariant, and the ellipses become narrower in the horizontal 
direction (see denser lines in the figure).  

For higher Reynolds numbers (see Figs. 12 and 13a), the 
ratio of vertical to horizontal amplitudes is larger than unity 
from the start, and the galloping ellipses become 
progressively more vertical. However, these motion trends 
are lost when increasing Reynolds number beyond 49000 
(Se Fig. 13b) and the elliptic trajectories appear random. 

  
Figure 11: X-Y trajectory, (a) Re 6000, (b) Re 9000 

  
Figure 12: X-Y trajectory, Re 12736 (a), Re 18000 (b)  

  
Figure 13: X-Y trajectory, Re 24707 (a), Re 49414 (b) 

I. CONCLUDING REMARKS 
In this study, as a proof of concept, a numerical 

framework for studying cable-galloping instabilities as a 
fluid-structure interaction event is presented, and results are 
validated against experiments.  This framework is general 
and can be used to study iced conductors with any specified 
structural parameters at any free stream conditions. Such a 
computational framework will eventually provide a 
powerful simulation tool that will permit a better 
understanding of the physics of cable galloping events and 
their effective mitigation. 
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