SEA SPRAY ICING PROFILES ON FIXED OFFSHORE STRUCTURES

Kathleen F. Jones
Terrestrial and Cryospheric Sciences Branch, CRREL, Hanover, New Hampshire USA
kathleen.f.jones@usace.army.mil

Abstract: While ships create spray by slamming into waves as they push through the wave field, spray impinging on fixed platforms comes primarily from drops generated from wind waves. I determine spray drop profiles over the ocean using a published concentration density function for drops created by bursting bubbles. That function has been extended to very high wind speeds to include drops created by the wind rippling water off the crests of waves. Above the water, in the atmospheric surface layer, the spray concentration profile is assumed to follow a power law, based on friction velocity and drop fall velocities. I use drop concentration profiles based on measured meteorological data to determine the vertical profile of liquid water content, median volume radius, and spray icing rate on components of fixed offshore platforms. I compare simulated icing rates with semi-quantitative icing observations in very high winds on the semisubmersible exploration and drilling platform Ocean Bounty.

I. INTRODUCTION

Sea spray drops are carried by the wind and impact objects in their path. When the air temperature is below 0°C, spray drops may accrete as ice on ships and offshore structures. Many offshore structures, including semisubmersible oil exploration and production platforms, are fixed and have little area at the waterline. For those structures, sea spray impacting the superstructure comes from wind waves.

In this paper I extend the analysis in [1], focusing on the variation with elevation of liquid water content and median volume drop radius. Using weather and wave data from a semisubmersible offshore platform in Cook Inlet, Alaska, I simulate sea spray icing on cylindrical components at various elevations on the platform. Estimates of the variation in icing rate with elevation and cylinder diameter are obtained using the calculated collision efficiency and an ice density formulation. The resulting ice accumulation rates are compared to the semi-quantitative observations of the icing rates on the platform.

2. SEA SPRAY CONCENTRATION PROFILES

The sea spray concentration density function \(dC(r)/dr \), the number of drops per cubic meter per micron\(r \), is the upper limit of the source region for spray droplet production. The sea spray liquid water content density function \(W(r,z) \) is determined from the drop concentration density function.

I simulate total liquid water content \(W(z) \) and median volume drop radius \(r_{MVR}(z) \) based on meteorological and wave height measurements from the Ocean Bounty platform at the end of 1979 and plot profiles of these parameters as a function of time. Compared to typical values in supercooled clouds at the summit of Mt. Washington, where \(W = 0.1 \) to 1 g m\(^{-3}\) and \(r_{MVR} = 5 \) to 30 \(\mu m \) [5], sea spray liquid water contents are typically much smaller and median volume radii are larger.

3. REFERENCES

Sea spray icing profiles on fixed offshore structures

Kathleen F. Jones
Terrestrial and Cryospheric Sciences Branch
Cold Regions Research and Engineering Laboratory
Hanover, New Hampshire USA
kathleen.f.jones@usace.army.mil

Abstract—While ships create spray by slamming into waves as they push through the wave field, spray impinging on fixed platforms comes primarily from drops generated from wind waves. I determine spray drop profiles over the ocean using a published concentration density function for drops created by bursting bubbles. That function has been extended to very high wind speeds to include drops created by the wind ripping water off the crests of waves. Above the water, in the atmospheric surface layer, the spray concentration profile is assumed to follow a power law, based on friction velocity and drop fall velocities. I use drop concentration profiles based on measured meteorological data to determine the vertical profile of liquid water content, median volume radius, and spray icing rate on components of fixed offshore platforms. I compare simulated icing rates with semi-quantitative icing observations in very high winds on the semisubmersible exploration and drilling platform Ocean Bounty.

III. SEA SPRAY CONCENTRATION

Reference [2] provides a sea spray concentration density function, which can be rewritten in terms of \(dC(r)/dr \), the number of drops with radius \(r \) per cubic meter per micron:

\[
\frac{dC(r)}{dr} = 7 \times 10^4 U_{10}^2 \frac{z}{r} \exp \left(-\frac{1}{2} \left(\frac{\ln(r/0.3)}{\ln 2.8} \right)^2 \right). \quad (1)
\]

This function applies for \(U_{10} \), the wind speed at 10m, between 5 and 20 m s\(^{-1}\). It represents film and jet drops, which are created when the bubbles in whitecaps burst. As the wind speed increases, the wind begins to rip the tops off of waves, creating spume drops, which tend to be larger than film and jet drops. Reference [1] revises (1) to include spume generated at high wind speeds, using data from concentrations measured for \(U_{10} \) as high as 28.8 m s\(^{-1}\). That spray concentration density function has a stronger dependence on wind speed and a longer tail:

\[
\frac{dC(r)}{dr} = 3U_{10}^4 \frac{z}{r} \exp \left(-\frac{1}{2} \left(\frac{\ln(r/0.3)}{\ln 4} \right)^2 \right). \quad (2)
\]

These two functions are plotted in Fig. 1 for \(U_{10} = 6, 12, \) and 24 m s\(^{-1}\).

The spray drops are created at the ocean surface and carried aloft by turbulent convection. Small drops, with smaller gravitational settling velocities \(v_g \) tend to remain aloft longer than large drops. Drops with radii of 12, 30, 240, and 500 µm have \(v_g \) of 0.02, 0.1, 2, and 4 m s\(^{-1}\), respectively. The drop concentration at elevation \(z \) is given by [3]:

\[
\frac{dC(r, z)}{dr} = \frac{dC(r, h)}{dr} \left(\frac{z}{h} \right)^{v_g \alpha_0 s^2}, \quad (3)
\]
The total liquid water content $W(z)$ over radius. The median volume radius determined from the drop concentration density function: has windward side of the crest [4], so I use a nominal h whitecaps, generally in the wave troughs on the windward side of the crest [4], so I use a nominal $h=1$ m for determining the profile for the source concentration given by (1). Spume drops are generated at the wave crest, so the profile resulting from the source concentration (2) has $h=0.5H_{1/3}$, where $H_{1/3}$ is the significant wave height.

The sea spray liquid water content density function is determined from the drop concentration density function:

$$\frac{dW(r,z)}{dr} = r_w \frac{4}{3} \pi r^3 \frac{dC(r,z)}{dr}. \quad (4)$$

The total liquid water content $W(z)$ is the integral of (4) over radius. The median volume radius r_{MVR} of the drops is a useful characterization of sea spray. It is the drop radius for which half the water in the spray is in smaller drops and half is in larger drops. Simulated $W(z)$ and $r_{MVR}(z)$ based on meteorological and wave height measurements from the Ocean Bounty platform at the end of 1979 are shown in Fig. 2. Note the strong variation with wind speed and the weaker variation with elevation. Compared to typical values in supercooled clouds at the summit of Mt. Washington, where $W=0.1$ to 1 g m$^{-3}$ and $r_{MVR}=5$ to 30 µm [5], sea spray liquid water contents tend to be much smaller and median volume radii are larger.

IV. ICE ACCRETION FORMULATION

The spray drops quickly cool to below the air temperature, so if $T(z)<0^\circ$C the drops freeze to any structure they impact in flight. The flux of spray water is the product of $dW(r,z)/dr$ and the wind speed $U(z)$. The mass accretion rate per unit area $dm(z)/dt$ on a cylinder with diameter D, with its axis perpendicular to the wind direction, is determined by the flux of spray drops and the collision efficiency $E(U,r,D)$ [6] of the drops with the cylinder:

$$\frac{dm(z)}{dt} = U(z) \int_{r_{\text{min}}}^{r_{\text{max}}} E(U,r,D) \frac{dW(r,z)}{dr} dr. \quad (5)$$

The minimum drop radius $r_{\text{min}}=5$ µm is reasonable, because the small drops have low collision efficiencies. Large drops are rare and have relatively large settling velocities, so $r_{\text{max}}=400$ µm, is sufficiently large. The accretion of ice is often described in terms of its thickness rather than its mass. If I make additional assumptions about the shape and density of the ice that accretes, I can estimate the rate of change of the ice thickness. As shown in Fig. 2, sea spray liquid water contents are small so the drops are likely to freeze individually on impact, rather than coalescing and flowing around the cylinder before freezing. Therefore, I assume that the ice accretion cross-sectional shape is a semi-ellipse on the windward side of the cylinder with a semi-minor axis $D/2$, perpendicular to the wind direction, and a semi-major axis $I+D/2$. Then the icing rate in terms of thickness I is

$$\frac{dI(z)}{dt} = 4 \frac{dm(z)}{pr_i} \frac{1}{pr_i}, \quad (6)$$

where ρ_i is the density of the accreted ice.

Reference [7] reports densities of samples of spray ice taken from locations on the foredeck of a Coast Guard cutter during a cruise in the Bering Sea in February and March 1990. The sample densities range from 0.69 to 0.92 g cm$^{-3}$ for ice that accreted at air temperatures ranging from 0 to -15°C. The spray that caused these ice accretions was generated by the ship slamming into waves. Reference [8] reports the characteristics of this ship-generated spray. The liquid water contents ranged between 1.1 and 1163 g m$^{-3}$, with a median value of 64 g m$^{-3}$. The median volume radii ranged between 85 and 3050 µm, with a median value of 550 µm. In comparison, for U_{10} up to 39.5 m/s, the simulated sea spray liquid water content ranges up to 0.082 Tm and median volume radius ranges from 11 to 94 Tm (Fig. 2).

The characteristics of sea spray generated from wind waves are more similar to the characteristics of clouds than they are to the characteristics of ship-generated spray. Therefore, I use a rime density relationship determined from multicylinder data at Mt. Washington [9] as a first attempt to estimate accreted ice densities from sea spray on fixed offshore platforms:
\[\rho_i = 1.335 + 0.1010 \log \left(\frac{EW}{\rho} \right) \times 10^{-6} + 0.4137E \]
\[+ 2.437 \frac{k_a T_a}{\mu_a L_f} + 38.29 \frac{V^2}{L_f} \times 10^{-3} \]

where \(\rho_i \) is in units of g cm\(^{-3}\), \(\mu_a \) [g cm\(^{-1}\) s\(^{-1}\)] = 0.000171 + 5.2 \times 10^{-7} T_a is the dynamic viscosity of air at temperature \(T_a \), \(k_a \) [J cm\(^{-1}\) s\(^{-1}\) °C\(^{-1}\)] = 4.186 \times 10^{-6} (573 + 1.8 T_a) is the thermal conductivity of air, and \(L_f \) = 334 J g\(^{-1}\) is the latent heat of fusion of water. Convenient units are used in (7), with the powers of ten in the second and last terms for the conversion to consistent units. Equation (7) does not account for the salinity of the spray drops and the brine that is ejected as the drops freeze. I expect it to provide only a rough estimate of the spray ice density. If the computed density from this equation is unrealistically high or low in spray ice accretion simulations, it is constrained to minimum and maximum values of 0.1 and 0.9 g cm\(^{-3}\), respectively.

V. OCEAN BOUNTY SPRAY ICING EVENTS

Spray icing of the semi-submersible exploratory drilling rig Ocean Bounty during the winter of 1979-1980 is described in [10], [11], [12], and [13]. The Ocean Bounty is 107 m long and 81 m wide, with the main deck 16 m above the ocean surface. The anemometer was 84 m above sea level. The rig was operated by Phillips Petroleum Company near Kamishak Bay in Lower Cook Inlet, Alaska, 20 km from shore in 160 m of water.

From 24 September 1979 to 26 April 1980 meteorological and oceanographic data were recorded by Oceanroutes, Inc., meteorologist-observers every day. Beginning 20 December 1979, superstructure icing was added to the daily data sheets and was recorded as light, moderate, heavy, or very heavy, following [13], which quantifies icing rates in inches per day as 0.04 to 1.4 (light), 1.4 to 2.6 (moderate), 2.6 to 5.7 (heavy), and 5.7+ (very heavy). Note that inches day\(^{-1}\) is essentially the same as mm hr\(^{-1}\). There is no information about where on the Ocean Bounty the icing rate observations were made. Weather, sea, and icing parameters were recorded every two hours from 0600 to 1800 LST. Some of those parameters were also recorded at 0200 and 2200. Water temperature was measured once a day at 1400. Scanned copies of the data sheets were provided to me by the Department of the Interior’s Minerals Management Service (now Bureau of Ocean Energy Management, Regulation and Enforcement).

Fig. 3 shows (a) the air temperature \(T_a \) (assumed to be measured at 84 m also) and water temperature \(T_w \), (b) \(U_{10} \) calculated from the measured wind speed, and (c) observed \(H_{1/3} \). The threshold wind speed for the
Figure 3. Ocean Bounty observations and simulations, winter of 1979-1980 a) air temperature, b) wind speed at 10 m, c) significant wave height, d) sea spray liquid water content, e) sea spray median volume drop radius, f) average collision efficiency, g) density of accreted ice, h) icing rate.
The reasons for the varying level of agreement between the observed icing rate and the simulated rate in Fig. 4h are not obvious.

The simulation focused on two disparate situations: a 1-cm-diameter cylinder at 15 m above the ocean surface, and a 10-cm-diameter cylinder at 80 m. The first case has larger liquid water contents, median volume drop radii, and collision efficiencies than the second case, and therefore higher accreted ice densities. The simulation shows that the smaller mass and the lower density of accreted ice aloft results in an icing rate, in terms of thickness, that is nearly the same as that on the 1-cm cylinder at 15 m. Thus, for the comparison between observations and simulations, knowing the specifics of the icing observations does not appear to be important.

A possible explanation for the difference between simulation and observation is that the fourth power of U_{10} in (2) is too big. A smaller power for U_{10} with a commensurate increase in the multiplier would result in a less pronounced increase in concentration with wind speed. The effect of such a change on Fig. 4h would be to decrease the differences between the simulated icing rates in the six observed icing events.

By taking advantage of drilling and exploration platforms in northern oceans, researchers have the opportunity to contribute to understanding and quantifying sea spray associated with wind waves. Simultaneous multicylinder observations [15] at a number of elevations on such a platform, supplemented by weather and sea state observations, would characterize the variation of liquid water content and median volume drop radius of the spray. This research would also allow us to reliably forecast icing on fixed offshore platforms, as is currently done for ships [16].

ACKNOWLEDGMENT

This work was supported by U.S. Department of the Interior Minerals Management Service (MMS) under Interagency Agreement M07RG13274.

REFERENCES

