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Abstract: Aufeis (also referred to as icing, or as naleds in 
Russian) are spreading and thickening ice accretions that form in 
cold air when a shallow sheet of water flows over a cold surface 
and progressively freezes on it. Aufeis formation was simulated 
on a sloped planar aluminum surface subject to wind. An initial 
morphologies of aufeis appeared wavelike (or terraced), and its 
roughness spacing and height varied with slope and wind speed. 
This paper proposes a theoretical model to explain the roughness 
characteristics of the initial aufeis morphology. Water is 
introduced from the top of a plane set in a cold room, and the 
resulting supercooled water is driven by gravity and wind drag. In 
this model, ice grows from the water film by releasing latent heat 
to the air by convection and by heat conduction into an aluminum 
substrate beneath the ice sheet. The water and air boundary layers 
are simultaneously disturbed due to change in the ice shape and 
the disturbed water flow interacts with the air flow. Applying 
linear stability analysis on this air/water/ice/aluminum multi-
phase system, the effects of the water supply rate, plane slope, 
and air stream velocity on the spacing and height of ice surface 
roughness were investigated. It was found that air shear stress 
disturbances at the water-air interface affect the convective heat 
transfer rate and the ice growth conditions. 

 
1. INTRODUCTION 

We consider a model of ice growth on an inclined 
aluminum plate supplied by water from the top. The 
current model is based on experiments by Streitz and 
Ettema for an initial aufeis formation on an inclined plane 
in a cold room [1]. The water flows as a thin sheet driven 
by gravity and wind drag. One side of the water film is a 
water-air interface and the other side is growing ice. The 
initial aufeis morphologies observed in the Streitz and 
Ettema experiments were wavelike (or terraced), and their 
spacing and height varied with plane slopes and wind 
speeds. For a given water supply rate, plane slope and air 
stream velocity, an initial aufeis morphology was 
investigated using linear stability analysis.  

 
2. RESULTS  

In this study, the effect of the interaction between air and 
water flows on the ice growth conditions is taken into 
account. In Figs. 1(a) and (b), air shear stress disturbances 
are considered in the solid lines, which is not the case for 
the dashed lines.  If we neglect the effect of the air shear 
stress disturbances on the water-air interface, the shape of 
the water-air interface is not correctly predicted. As a result, 
the heat transfer coefficient at the water-air interface is 

erroneously estimated. Consequently, the amplification rate 
of the ice-water interface disturbance is overestimated. 
This result indicates that in order to evaluate the amplitude 
of the ice surface roughness, the amplification rate must be 
correctly evaluated without neglecting the interaction 
between air and water flows. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: (a) The ratio of disturbed convective heat transfer 
coefficient to undisturbed one vs. dimensionless wave number. 
(b) Dimensionless amplification rate  vs. dimensionless wave 
number. The solid line is the case with air shear stress 
disturbances. The dashed line is the case without air shear stress 
disturbances.  
 
3. CONCLUSION 

Using linear stability analysis, the roughness spacing and 
amplification rate of the ice-water interface were calculated 
for a given water supply rate, plane slope and air stream 
velocity. The major findings are follows: (1) The ice-water 
interface becomes unstable as the ice thickness increases 
and its characteristic wavelength is about 1 cm. (2) If the 
effect of air shear stress disturbances on the water-air 
interface is neglected, the magnitude of the disturbed heat 
transfer coefficient and the amplification rate of the ice-
water interface disturbance are overestimated.  
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Figure1. Schematic view of model and coordinate system.  
 
inclined plane with respect to the horizontal. A steady air 
and water flows is parallel to the x axis. is the free 

stream velocity. 
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I. INTRODUCTION  
We consider a model of ice growth on an inclined 
aluminum plate supplied by water from the top, as shown in 
Fig. 1. The current model is based on the experiments by 
Streitz and Ettema about an initial aufeis formation on an 
inclined plane in a cold room [1]. In the physical model, 
water flows as a thin film driven by gravity and wind drag. 
One side of the water film is a water-air interface and the 
other side is growing ice. The initial aufeis morphologies 
observed in the Streitz and Ettema experiments were 
wavelike (or terraced), and their spacing and height varied 
with various plane slopes and wind speeds. In Fig. 1, x is 
the position along the inclined plane measured from the top, 
and is the position measured from a flat ice-water 
interface. The water supply rate per width was the same as 
in Streitz and Ettema experiments. 

y

θ  is the angle of the  
 
 

0δ ,  and are the thickness of air 
boundary layer, water layer and ice, respectively. The 
values 

0b

1692/ =wlQ [(ml/h)/cm] [1], 18/πθ =  and  
m/s are used throughout this paper. An initial aufeis 
morphology was investigated using linear stability analysis.  
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II. GOVERNING EQUATIONS 
The equations governing momentum and heat in the air 
region are 
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where , are air flow velocities, and  the air 
pressure and temperature, and

au av
ap aT

  ,  and 
aρ aν aκ are the density, 

kinematic viscosity and thermal diffusivity of air. The 
equations governing momentum and heat in the water 
region are 
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where is the temperature at the water-air interface, and 
 is the thermal conductivity of air. Finally, as
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velocities and temperature asymptote to their far-field 
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where , are water flow velocities,  and  are the 

water pressure and temperature, and
lu lv lp lT

lρ , lν and lκ
 are the 

density, kinematic viscosity and thermal diffusivity of 
water, g  is the gravitational acceleration and θ  is the 
plane angle. The temperature  in the ice region is 
governed by 
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At the ice-water interface, ζ=y , the no-slip condition is 
imposed:  
           ,               (10) 0| ==ζylu .0|v ==ζyl

At the water-air interface, ξ=y , the kinematic condition 
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Velocity, normal and tangential stresses are continuous 
across the water-air interface:  
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where lμ , aμ  are the viscosities of water and air, and γ  is 
the surface tension of the water-air interface. The continuity 
of temperature and heat flux at the ice-water interface, 

ζ=y ,  is 
                          (15) ,|| iysyl TTT == == ζζ
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where the temperature at the ice-water interface,  is an 
unknown to be determined because the interface is subject 
to the shearing water flow, 

iT

L is the latent heat per unit 
volume, V is the undisturbed ice growth rate, and are 
thermal conductivities of ice and water, respectively. The 
continuity of temperature and heat flux at the water-air 
interface, 
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III. LINEAR STABILITY ANALYSIS 
The field variables are decomposed into undisturbed and 
disturbed parts, as follows: 
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The disturbed part is of typical normal mode form. In (20) 

ir iσσσ += is complex, where rσ is the growth rate of 

the disturbance and iσ is the oscillation frequency, is the 
wave number of the disturbance along the 

k
x direction. 
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disturbance.  and are the free stream velocity and 
the surface velocity of the water film, respectively. 
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and temperature in the water film are  
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from which  the ice thickness  is determined [2]. 0bwhere 
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VI. RESULTS 
Fig. 2 shows the dimensionless amplification rate  

versus the dimensionless wave number . In the )(
*
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moves upwards at a speed of Vp 283|v| = . On the other 

hand, in the case of 

 
 
 
 
 
Figure 2. Dimensionless amplification rate vs. dimensionless wave 

number . 
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case of  00 100δ=b , the ice-water interface disturbance 

becomes unstable and acquires a maximum value at 
 . The corresponding wavelength of ice surface 

roughness is 
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== *0 /2 akπδλ 1.26 cm for 

m, and the ice-water interface disturbance  4
0 1061.3 −×=δ

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. (a) The ratio of disturbed convective heat transfer coefficient to 
undisturbed one, 

xx hh /|| ′ vs. dimensionless wave number  

for

*ak

00 100δ=b . (b) vs. . The solid line is the case with air 

shear stress disturbances. The dashed line is the case without air shear 
stress disturbances. 
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00 δ=b ,  is negative for all wave 
numbers, which means that an ice-water interface 
disturbance diminishes with time. Figs. 3 (a) and (b) show 
the ratio of the disturbed convective heat transfer 
coefficient to the undisturbed one, 

)(
*

rσ

xx hh /|| ′ , and 

against  the dimensionless wave number , 
respectively. In these figures, the solid lines take into 
account the effect of the tangential and normal air shear 
stress disturbances on the water-air interface, while the 
dashed lines do not consider them. 
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V. CONCLUSIONS 
Using linear stability analysis, the roughness spacing and 
amplification rate of the ice-water interface were calculated 
for a given water supply rate, plane slope and air stream 
velocity. The major findings are follows: (1) The ice-water 
interface becomes unstable as ice thickness increases and 
its characteristic wavelength is about 1 cm. (2) If the effect 
of air shear stress disturbances on the water-air interface is 
neglected, the magnitude of the disturbed heat transfer 
coefficient and the amplification rate of the ice-water 
interface disturbance are overestimated.  
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